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Abstract

We introduce two time-delay models of metabolic oscillations in yeast cells. Our
model tests a hypothesis that the oscillations occur as multiple pathways share
a limited resource which we equate to the number of available ribosomes. We
initially explore a single-protein model with a constraint equation governing the
total resource available to the cell. The model is then extended to include three
proteins that share a resource pool. Three approaches are considered at con-
stant delay to numerically detect oscillations.

Our results show that certain combinations of total resource available and the
time delay, lead to oscillations. We observe that an oscillation region in the
parameter space is between regions admitting steady states that correspond to
zero and constant production. Similar behavior is found with the three-protein
model where all proteins require the same production time. However, a shift in
the protein production rates peaks occurs for low available resource suggesting
that our model captures the shared resource pool dynamics.

Motivation

Protein synthesis is a critical function for life so it is important to model this process
to advance our understanding of biology. A phenomenon has been observed in
yveast cell populations under low growth conditions where the protein production
oscillates [2].
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1-Protein Time Delay Model

= Ribosome Initiation: u(t) = f(p(t))R(t) L.0]
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Single Protein System:
p(t) = Bf(p(t — 1)) R(t —7) — Dpl(t),
R(t) = A(f(p(t —7))R(t —7) = f(p(t)))R(t))
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Parameter Space Search

For analysis, we restrict the parameter spaceto A =1, B =2, D = 10, k = 0.5,
n = 2.
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1-Protein Linear Stability

Trivial Equilibrium: (p*, R*) = (0, Ry) — Stable ¥ D > 0

A spectral element approach was used to approximate the dominant eigenvalue of
the linearized system about the equilibrium points for combinations of 7 and R.
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Numerical Simulations
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Periodic Solutions
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3-Protein System

Model:

p1(t) = B1f(pa(t — 1)) f(p3(t — 1)) R(t — 71) — D1ipa,

pa(t) = Baf(p1(t — m))R(t — m2) — Daops,

p3(t) = Baf(p1(t — 73)) R(t — 73) — D3ps,

R(t) = A(pa(t — 11) + po(t — ) + polt — 73) — p1(t) — 2us(t)),

t {
Rp=R(t)+ A ( . f(p2(s)) f(p3(s))R(s)ds + . f(p1(s))R(s)ds +
t
- f (pl(S))R(S)dS>

3-Protein Linear Stability

Trivial Equilibrium: (p7, p3, p3, R*) = (0,0,0, Rp) — Stable V Dy, Do, D3 > 0

We restrict the delays to 1 = m» = 73 = 7 and set all growth and decay rates to be
equal to the values from the single protein system.
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Conclusion
1. For low production time and sufficient resource, protein production is constant.
2. For insufficient resource, no production occurs.
3. Between the steady states, oscillations occur in the protein production rate.
4. Low total resource results in a temporal shift occurs in the protein production

rate which could be a more efficient use of shared resources.
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