
By

Maxwell Chumley

A DISSERTATION PROPOSAL

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Mechanical Engineering and Computational Mathematics Science and Engineering—Doctor of
Philosophy

2024

LEVERAGING DIFFERENTIATION OF PERSISTENCE DIAGRAMS FOR PARAMETER
SPACE OPTIMIZATION AND DATA ASSIMILATION

ABSTRACT

Persistent homology, the flagship tool from Topological Data Analysis (TDA) has been success-

fully utilized in many different domains despite the absence of a differentiation framework. Only

recently a differential calculus has been defined on the space of persistence diagrams thus unlock-

ing new possibilities for combining persistence with powerful solvers and optimizers. This work

explores harnessing persistence differentiation for navigating the parameter space of dynamical

systems, and for topological data assimilation. Specifically, in Chapter 1, I show preliminary work

on how persistence-based cost functions can be constructed and used to optimally traverse the pa-

rameter space of a dynamical system. The cost functions are designed by specifying criteria that

correspond to the structure of a desirable target persistence diagram while penalizing undesirable

persistence features. I also explore possibilities for a new topological data assimilation framework,

and discuss some promising future applications in time series analysis. In chapter 2, connections

to time series representations and attractor reconstruction are presented in my work performing dy-

namic state detection using persistent homology of network representations of time series signals

and new methods for time delay estimation for attractor reconstruction using persistent homology.

Other applications of persistent homology are also presented in Chapter 3 where a texture analysis

pipeline was developed to quantify specific features of a texture using TDA. Finally, in Chapter 4

I present a time delay framework for modeling metabolic oscillations in Yeast cells and numerical

methods are used to locate parameters of the system that lead to limit cycles.

Copyright by
MAXWELL CHUMLEY
2024

ACKNOWLEDGEMENTS

• This material is based upon work supported by the Air Force Office of Scientific Research

under award number FA9550-22-1-0007.

• This work is supported in part by Michigan State University and the National Science Foun-

dation Research Traineeship Program (DGE-2152014) to Maxwell Chumley.

iv

PUBLICATIONS

Current Publications

Journal Papers
1. Chumley, M. M., Khasawneh, F.A., Otto, A., Gedeon, T. (2023). “A Nonlinear Delay Model

for Metabolic Oscillations in Yeast Cells." Bulletin of Mathematical Biology, 85, 122.

2. Myers, A. D., Chumley, M. M., Khasawneh, F. A., & Munch, E. (2023). Persistent homol-
ogy of coarse-grained state-space networks. Physical Review E, 107(3), 034303.

3. Chumley, M. M., Yesilli, M. C., Chen, J., Khasawneh, F. A., & Guo, Y. (2023). Pat-
tern characterization using topological data analysis: Application to piezo vibration striking
treatment. Precision Engineering [Editor’s Recommendation], 83, 42-57.

Conference Papers
1. Yesilli, M. C., Chumley, M. M., Chen, J., Khasawneh, F. A., & Guo, Y. (2022, June).

Exploring surface texture quantification in piezo vibration striking treatment (PVST) using
topological measures. In International Manufacturing Science and Engineering Conference
(Vol. 85819, p. V002T05A061). American Society of Mechanical Engineers.

Future Publications

Journal Papers
1. Myers, A. D., Chumley, M.M., & Khasawneh, F. A. (2024). Delay parameter selection in

permutation entropy using topological data analysis [Under Review].

2. Chumley, M.M., & Khasawneh, F. A. Optimal dynamical system parameter space paths
using persistence optimization.

3. Chumley, M.M., & Khasawneh, F. A. Target tracking and forecasting using topological data
analysis and data assimilation.

v

TABLE OF CONTENTS

CHAPTER 0 INTRODUCTION . 1

CHAPTER 1 PERSISTENCE OPTIMIZATION . 3
1.1 Persistence and Optimization Background . 3
1.2 Optimal Parameter Space Navigation . 12
1.3 Topological Data Assimilation for Target Tracking 19

CHAPTER 2 TIME SERIES REPRESENTATIONS 26
2.1 Persistent Homology of Coarse Grained State Space Networks 26
2.2 Timeseries Embedding Delay Estimation with TDA 47

CHAPTER 3 TEXTURE ANALYSIS . 74
3.1 Characterizing Depth and Roundness . 74
3.2 Characterizing Pattern Shape . 101

CHAPTER 4 MODELING . 112
4.1 A Nonlinear Delay Model for Metabolic Oscillations in Yeast Cells 112

BIBLIOGRAPHY . 137

vi

CHAPTER 0

INTRODUCTION
Topological Data Analysis (TDA) is a field that is focused on quantifying shape or global structure
information from data. One of it most common tools, persistent homology has been used across
many domains such as damping parameter estimation [1], bifurcation detection [2] and chatter
detection in machining [3]. These are only a few of the many successful applications of persistent
homology. Due to the inherent connection between dynamical systems and topology, persistence
is an ideal tool for studying dynamical systems and developing automatic methods for analyzing
time series signals. While the success of persistent homology has been wide reaching, it has been
limited by the lack of a calculus on the space of persistence diagrams. Recently a framework
for differential calculus has been introduced and studied in the context of optimization on the
space of persistence diagrams [4–6] that enables a gradient descent optimization of persistence
based functions. Overall, my work is organized into the four chapters shown in Fig. 0.1 where
the overarching tools from persistent homology represent a common theme between most of this
work. The projects are color coded according to where they fit into my research plan. Proposed
and current work are presented first with past work being included later.

Figure 0.1 Overview of past, current and future work covered in this proposal.

Chapter 1 gives an overview of persistent homology and the differentiation framework on per-
sistence diagrams. This overview is followed by two novel proposed applications of this tool.
The first application in Section 1.2 is focused on optimal parameter space navigation of dynamical
systems. The behavior of a dynamical system is heavily governed by the topological structure
of its state space response, so it is paramount that the connection between these domains is well
understood. In general, a dynamical system may contain many parameters that control the quali-
tative behavior of the system and performing this analysis can be tedious and require expert level
decisions for reducing the dimensionality of the problem. Leveraging topological features of the
system trajectories in a data driven approach can allow for intuitively specifying desired perfor-

1

mance characteristics of the system without the need for a model. I present a proposed pipeline
for implementing dynamical system parameter spaces into the persistence differentiation frame-
work to allow for the full inverse problem to be solved. Experimental validation plans are also
outlined in the context of analyzing Hall Effect Thrusters (HET) data from the Air Force Research
Lab (AFRL). For the second application of persistence optimization, I introduce a new data as-
similation framework for performing optimal state estimation using persistence optimization in
Section 1.3. Time series forecasting methods and data assimilation concepts are reviewed and the
methodology for the new framework is presented. Preliminary results demonstrating the effective-
ness of persistence optimization in a data assimilation pipeline are also included.

Chapter 2 contains my work on time series representations. In many engineering applications,
access to the state space is limited to only a single time series signal that represents a much higher
dimensional system. Two common approaches are used for analysis: network representations and
time delay embeddings. In Section 2.1, a network representation method called Coarse Grained
State Space Networks (CGSSN) are studied using persistent homology of networks to perform
dynamic state detection between periodic and chaotic states. This work is published in [7]. Sec-
tion 2.2 presents novel methods for automatically estimating the Takens embedding delay for a
time series using persistent homology. Many methods exist for doing this such as the mutual in-
formation and multi-scale permutation entropy methods, however, in practice these methods are
not guaranteed to work and can be difficult to tune hyperparameter for the specific system be-
ing studied. I aimed to introduce an alternative method using sublevel persistent homology for
automatically determining the embedding delay and demonstrate the success of this approach in
Section 2.2. The methods in this chapter provide a clear connection to Chapter 1 allowing for
extensions of those methods to the case where other representations of signals are implemented.

In Chapter 3, I present my work on performing texture analysis using TDA. Data was analyzed
from a novel manufacturing process called Piezo Vibration Striking Treatment (PVST) where plas-
tic deformation is induced on the surface of a part to create a texture of indentations that can be
controlled using various system parameters. The system parameters are tightly linked to charac-
teristics of the resulting texture and mechanical properties. Prior to this work the textures were
analyzed manually by inspecting the texture scans. I aimed to quantify three texture features us-
ing TDA: striking depths, roundness and pattern shape. Scores were developed to quantify these
features from the image data using sublevel persistent homology. The first paper in Section 3.1 in-
troduces the methods for quantifying the depth and roundness features and this work is published
in [8]. For the second paper in Section 3.2, the method for quantifying pattern shape of a texture is
presented and this work is published in [9].

Lastly, in Chapter 4 my work on a nonlinear delay model for metabolic oscillations is shown.
Experimentally, it was observed that in a state of limited resource, protein production rates of yeast
cell colonies oscillate in approximately 40 minute intervals. I set out to model these oscillations
using a time delay framework. Due to the immense complexity of time delay systems, I explored
three different numerical methods for searching for parameters that resulted in limit cycle oscilla-
tions along with verifying that the solution was periodic. I also extend the model to include three
coupled proteins to observe how the protein production rates behaved when using a shared resource
pool. The work introducing and analyzing this model is published in [10].

2

CHAPTER 1

PERSISTENCE OPTIMIZATION
This chapter contains proposed work of two novel applications using optimization of persistent
homology based functions. To date, the vast majority of work in topological data analysis has been
in the absence of calculus and leveraging the recent advancements made in the differentiability of
persistence diagrams unlocks an entirely new class of problems that can be solved with TDA. I
will start by introducing the relevant background theory on persistent homology and persistence
optimization in Section 1.1, then I present the first project in Section 1.2, where I aim to introduce
a dynamical system parameter space navigation layer to the persistence optimization pipeline to
allow for optimally controlling topological properties of a systems response in a data driven ap-
proach. In the second project, I introduce a new data assimilation framework using persistence
optimization to perform target tracking by optimally assimilating data from many different modal-
ities and models. This work is proposed in Section 1.3.

1.1 Persistence and Optimization Background
Topological data analysis (TDA) quantifies structure in data. One specific form of data in this

proposal is a point cloud in Rn. This section provides a brief review of persistent homology. More
specifics can be found in [11–18].

1.1.1 Topological Persistence
Homology: If a simplicial complex K is fixed, then homology groups can be used to quantify
the holes of the structure in different dimensions. This is done using homology, Hp(K), which is a
vector space computed from the complex, with p denoting the dimension of structures measured.
For example, in dimension 0, the rank of the 0 dimensional homology group H0(K) is the number
of connected components. The rank of the 1-dimensional homology group H1(K) is the number of
loops or holes, while the rank of H2(K) is the number of voids, and so on. For example, consider
Fig. 1.1(b) where we see that the simplicial complex contains three distinct holes meaning that the
rank of the 1D homology at this particular value of the connectivity parameter is 3.

Persistent homology: The main goal is to study the structure of a changing simplicial complex
(a generalization of a graph) by measuring its changing homology. Given a real valued function
on the simplices of K, such as the one induced on a point cloud {x1, · · · ,xN} ⊆Rd by obtaining the
Vietoris-Rips or simply Rips complex (VR). The basic idea is that the Rips complex with parameter
ε is a higher dimensional analogue of the proximity graph, where two vertices are connected with
an edge if the distance between the relevant points in the point cloud are at most distance ε . This
process forms a nested sequence or filtration of simplicial complexes K0 ⊆ K1 ⊆ ... ⊆ Kn which
induces a sequence of inclusion maps on the homology Hp(K1)→ Hp(K2)→ ·· · → Hp(Kn). An
example can be seen in the series of simplicial complexes in Fig. 1.1.

The appearance and disappearance of holes in the filtration is encoded in this sequence. This
information is then encoded in a persistence diagram, where three holes appear at ε = b and disap-
pear at increasingly larger ε values d1, d2, and d3 respectively. This information is represented as
points in R2 at (b,d1), (b,d2), and (b,d3). The collection of the points in the persistence diagram
give a summary of the topological features that persist over the defined filtration. Points far from

3

2 2

Figure 1.1 Persistence for point clouds. Each snapshot in (a)–(e) shows the rips complex for
increasing values of a disc of radius ε . Three prominent loops are formed (or born) at ε = b in
(b), and they start filling (or die) in (c)–(e) at ε values d1, d2, and d3, respectively. These loops are
represented in the 1D persistence diagram (f) as (birth,death) pairs (b, d1), (b, d2), and (b, d3).
Non-prominent loops form and die quickly as shown by the points near the diagonal.

the diagonal represent structures that persist for a long time, and thus are often considered to be
prominent features. See Fig. 1.1(f) for an example persistence diagram.

1.1.2 Scalar Optimization Methods
Before the differentiability of persistence based functions can be defined, it is crucial to under-

stand classical optimization approaches to provide a point of comparison for my methods. Using
classical scalar optimization as a starting point, given an objective function f : Rn → R, I am
interested in methods that can be used to solve the following constrained optimization problem,
min⃗x∈Ω f (⃗x), where Ω ⊆ Rn is the feasible region, x⃗ ∈ Rn is the input vector, and n is the dimen-
sion of the input space. If the objective function is chosen for a specific problem using features
of the data, an optimal solution can be obtained to satisfy the desired requirements. Methods for
solving this problem in general are highly dependent on the form and properties of the objective
and constraint functions. Two main categories exist for optimization methods: derivative based,
and derivative free. Derivative based methods are summarized in Section. 1.1.2.1, and derivative
free methods are explored in Section. 1.1.2.2.

1.1.2.1 Derivative Based Methods
The simplest form of derivative based optimization is when the objective function is scalar-

valued and is differentiable on its entire domain. In this case, the gradient can be used to reach
a local minimizer of the function where the critical points are computed by analytically solving
∇ f (⃗x) = 0. The solutions to this equation correspond to local minima or critical points of the
objective function f . Specifically, a local minima is defined as follows,

Definition 1. Let D(f) be the domain of f . Given a point x⃗0 ∈ D(f), we say that x0 is a local
minimizer of f if and only if there exists ε > 0 such that f (⃗x0)≤ f (⃗x) for all ∥⃗x− x⃗0∥< ε .

In other words, small perturbations of x⃗ near x⃗0 lead to larger objective function output values
making x⃗0 a local minimizer.

Definition 2. We say x⃗0 ∈D(f) is a global minimizer if and only if f (⃗x0)≤ f (⃗x) for all x⃗∈D(f (⃗x)).

4

If Ω is comprised of a set of convex inequalities and affine equality relationships, and the
domain of the objective function is a convex set, the problem is said to be a convex optimization
problem. In this case, the local minimizer is a global minimizer of the problem.

Definition 3. A set Ω is convex if and only if for all x,y ∈ Ω, tx+(1− t)y ∈ Ω ∀t ∈ [0,1].

Definition 4. A function f is convex if and only if D(f) is a convex set, and for all x⃗1, x⃗2 ∈ D(f),
f (t⃗x1 +(1− t)⃗x2)≤ t f (⃗x1)+(1− t)⃗x2 ∀t ∈ [0,1].

Definition 5. A function g is affine if and only if for some a⃗ ∈ Rn, b ∈ R, g(⃗x) = a⃗ · x⃗+b.

In the case where the critical points of the objective function cannot be determined analyti-
cally, the gradient descent algorithm is used. This algorithm takes steps in the input space of
the function in the direction opposite of the gradient or in other words stepping in the direction of
steepest descent [19]. A learning rate η is used as a hyperparameter to determine the size of the
steps in the input space and steps are taken in the input space until a local minimizer is reached if
it exists. There are three main variants of this process, batch, stochastic, and mini-batch gradient
descent [19]. Batch gradient descent is the original gradient descent method and the updated
estimate of the local minimizer can be computed as,

x⃗n+1 = x⃗n −η∇ f (⃗xn),

where n ∈ Z is the current index up to N the number of steps. This algorithm is guaranteed
to converge to a local minimizer for non-convex objective functions, and global minimizers for
convex functions [19]. In practice, the gradient can be expensive to evaluate over many directions
to find the direction that yields the largest descent. Stochastic gradient descent mitigates this
problem by computing the updated point using a single, randomly chosen direction to evaluate
the gradient [20]. The addition of a stochastic component in the algorithm does not change the
convergence properties if the learning rate is slowly decreased, and it also may converge to a more
desriable local minimum due to the overshooting [19]. The third method is mini-batch gradient
descent. Mini-batch combines the batch and stochastic gradient descent algorithms by performing
a series of small batch updates by estimating the gradient using a subset of randomly chosen data
points allowing for faster computations while decreasing the variance in the updates making it
a more stable algorithm [19]. Stochastic methods are much more common when using gradient
descent techniques because the randomness in the process allows for potentially jumping to a better
local minima if the objective function has multiple minima, whereas batch gradient descent is more
likely to approach the minimizer closest to the starting point [20].

1.1.2.2 Derivative Free Methods
Gradient computation is difficult if the objective function contains noise and impossible in

the case where the function is not differentiable. In the general case, optimization methods that
do not rely on derivatives are necessary. Derivative free optimization (DFO) is centered around
using alternative methods to solve optimization functions that do not require the gradient of the
objective function. There are two main approaches to optimization without differentiation: direct-
search, and model-based [21]. Direct-search methods leverage algorithmic function evaluations
and comparisons to locate potential solutions whereas model-based methods employ surrogate

5

models to approximate the objective function and analytically solve the surrogate optimization
problem [21].

Direct-Search Methods Within the area of direct-search methods, three types of algorithms are
commonly used: line-search, discrete grids, and simplex methods [22]. The line-search method
takes a given starting point x⃗k and direction d⃗k. The objective function is then evaluated along the
line φ(α) = f (⃗xk +α d⃗k) until the condition f (⃗xk +α d⃗k) ≤ f (⃗xk) is satisfied. Once the condition
is met, the new point is x⃗k+1 = x⃗k +αkd⃗k. This process is continued until the minimizing α is
below a specified tolerance [22]. It is important that the chosen directions can eventually span Rn

so that all potential points can be reached by the algorithm. For this reason, the unit coordinate
directions are typically chosen in successive order and are cycled through for each step [22]. This
method does not have any guarantees on reaching a limit point and depending on the step sizes
can eventually begin to cycle through values [22]. To avoid this issue, an additional condition
is imposed that if ∥xk+1 − xk∥ is bounded away from zero, then f (⃗xk+1)− f (⃗xk) is also bounded
away from zero [22]. This condition prevents movement in the input space causing no change in
the output of the function resulting in cyclic behavior. Discrete grid methods bound the input
variables within an n-dimensional rectangular grid where ai ≤ xi ≤ bi for i = 1...n. The iterative
process searches for x⃗k+1 on the grid such that f (⃗xk+1) ≤ f (⃗xk) [22]. The evaluation points are
typically chosen by sequentially stepping along the coordinate directions to determine which di-
rection to move [22]. Simplex methods are the third direct-search approach where a set of points
are generated in the search space to create a simplicial complex. The algorithm from [23] takes the
vertex with the largest function value in the complex and either moves remaining vertices toward
the current largest one or reflects the simplicial complex through the hyperplane spanned by the
remaining vertices repeating the process until an optimal value is reached. There are other meth-
ods that utilize simplices to solve optimization problems such as the simplicial homology global
optimization (SHGO) algorithm in [24] where a directed simplicial complex is formed based on
directing the edges according to comparing the magnitude of the function values at the vertices.
The set of minimizers in this case is then defined by all vertices that have every edge pointing
toward the vertex itself. This algorithm guarantees finding a global optimizer in finite time if the
simplicial sampling method is used to locate the vertices of the complex. It also does not require
that the function be smooth or continuous to find the optimizer. Notably, this method does not have
any smoothness requirements if the simplicial sampling method is used whereas other sampling
methods may require the function to be Lipschitz smooth [24].

Model-Based Methods The second class of DFO methods is a model-based approach. Rather
than using the full objective function, a surrogate model is used to approximate the cost function
for solving the optimization problem [21]. Many different model-based approaches exist for DFO
such as simply using interpolation or regression on output data points of the original function [25].
Many of the commonly used model-based DFO algorithms were developed by Powell [25]. These
algorithms are all trust region methods meaning that a series of smaller optimization problems are
solved near the current point using radius rk with a given trust region defined by ∥x−xk∥ ≤ rk [25].
Within the trust region, the objective function is then approximated as fk(x) with a linear or
quadratic surrogate model and the surrogate model is then minimized within the intersection of
the trust region and feasible region for the overall problem. The model fk(x) is determined from

6

sample points within a trust region. Using a linear model about a base point yb ∈Rn, fk(x) is com-
puted using a Taylor expansion as fk(x) = f (yb)+(x−yb)T ∇ fk(yb) and fitting this model requires
n+1 sample points in Rn. A similar model is obtained for quadratic approximations by adding the
term 1

2(x− yb)⊺∇2 fk(yb)(x− yb) and sampling 1
2(n+1)(n+2) points within the trust region [25].

We see that the number of required sample points increases as O(n2) which can become impractical
for computationally expensive function evaluations. To avoid this issue, undetermined quadratic
interpolation is used where a regularization problem is solved with respect to the previous iteration
k− 1 to allow for a smaller interpolation set [25]. Powell described five model-based optimiza-
tion schemes: Constrained Optimization BY Linear Approximation (COBYLA), Unconstrained
Optimization BY Quadratic Approximation (UOBYQA), LINearly Constrained Optimization Al-
gorithm (LINCOA), Bounded Optimization BY Quadratic Approximation (BOBYQA), and NEW
Unconstrained Optimization Algorithm (NEWUOA) [25]. See [25–31] for more details.

1.1.3 Vector and Multi-objective Optimization
All of the methods discussed in the previous section require a scalar-valued objective function

and the resulting solution depends strongly on how well that function is defined. In general, the
field of vector optimization deals with solving problems such as min⃗x∈Ω f (⃗x) where in general
f : Rn → Rp and Ω is defined using inequality and equality constraints as with the scalar methods
[32]. In an ideal case, one would solve decoupled optimization problems to individually minimize
each fi(⃗x), however, this is not always possible with a general feasible set.

Pareto Optimization: The concept of Pareto optimal points was introduced for this case where
the solution x⃗0 is considered optimal if ∀⃗x ∈ Ω, ∄ fi(⃗x)≤ fi(⃗x0) i = 1, ...p and at least one f j (⃗x)<
f j (⃗x0) [32]. Multiple Pareto optimal solutions may exist for a given multi-objective optimization
problem and all of the solutions have been shown to be on the boundary of the feasible set [33,34].
The concept of weak Pareto optimal solutions is also commonly used when true Pareto solutions
are difficult to find. A solution x⃗0 is weakly Pareto optimal if and only if ∄⃗x ∈ Ω such that fi(⃗x)<
fi(⃗x0) [33]. Many methods exist for solving for Pareto and weakly Pareto optimal points that are
summarized in [33], but some of the most common methods involve the process of scalarization
where the vector valued objective function is reduced to a scalar using a combination of all of
the objective function components. In particular, the weighted sum method is highlighted in [33]
where the objective function is converted to a scalar valued function as U = ∑

p
i=1 wi fi(⃗x) and it has

been shown that if wi > 0 ∀i, that the solution is Pareto optimal [35]. The weights are typically
constrained to sum to one and if any of the weights are equal to zero the solution may be weakly
Pareto optimal [33]. However, choosing the weights is a nontrivial task that can have a significant
impact on the final solution. Another approach that does not require any input from the user is to
convert the objective function to a scalar by taking its largest component [33]. This method is used
to generate preliminary results in Section 1.2.3.

1.1.4 Persistence Optimization
An emerging subfield of topological data analysis deals with optimization of persistence based

functions by exploiting the differentiability of persistence diagrams. Persistence diagrams are
commonly represented by many different scalar features used for machine learning such as the
total persistence [4], E(D) = ∑

p
i=1|di −bi|, which gives a measure of how far the persistence pairs

7

Figure 1.2 Mapping a point cloud θ to a real values persistence feature using the map
composition V ◦B.

are from the diagonal. In other words, this feature gives the sum of the persistence lifetimes
ℓi = di − bi. These scalar representations are referred to as functions of persistence [4]. Other
examples of functions of persistence include maximum persistence, E(D) = maxi|di − bi|, and
persistent entropy E(D) = −∑i pi log2(pi) where pi =

ℓi
∑i ℓi

[36] which gives a measure of order
of the persistence diagram. Other features such as the Wasserstein or bottleneck distance are
used for measuring dissimilarities between two PDs [4, 37]. In [4], it is specified that in order to
have differentiability of the persistence map, the function of persistence must by locally Lipschitz
and definable in an o-minimal structure or in other words definable using finitely many unions of
points and intervals. An example of a set that fails this criteria is the cantor set because it requires
infinitely many operations to determine if a point is in the set.

Generally, a function of persistence is evaluated through the map composition,

C : M B−−−−→ PD V−−−−→ R, (1.1)

where the input space M can be a point cloud or image that is mapped to a persistence diagram
using the filtration B [5]. An example of this mapping is shown in Fig. 1.2 where the square
point cloud is mapped to a persistence diagram using the map B with VR filter function and the
persistence diagram PD is mapped to the total persistence feature using the map V . The compo-
sition of these maps (V ◦B) allows for directly mapping the point cloud to a persistence features.
Reference [4] outlines the optimization of persistence-based functions especially via stochastic
subgradient descent algorithms for simplicial and cubical complexes with explicit conditions that
ensure convergence. A function of persistence is defined as a map from the space of persistence di-
agrams associated to a filtration of a simplicial complex to the real numbers such that it is invariant
to permutations of the points of the persistence diagram.

The PD is represented as a R number by way of the chosen function of persistence V . C has
enabled differentiability and gradient descent optimization of its members using the chain rule
on V ◦B to obtain desired characteristics of M [4–6]. B is differentiated by considering a local
perturbation or lift of the input space M, B̃. The space of possible perturbations is then mapped
onto the PD, and for a particular perturbation of M, the directions of change of the persistence
pairs form the derivative of B with respect to B̃ [5]. This process is pictorially represented using

8

Figure 1.3 Persistence diagram differentiation process. The top row shows the process of tracking
the birth and death of the loop from the original point cloud along with using the map B to obtain
its persistence diagram. The bottom row performs the same process on a perturbed point cloud
and demonstrates how the change in the persistence pair forms the derivative d

θ ,B̃B.

a simple point cloud in R2 consisting of a single loop in Fig. 1.3. The top row from left to right
shows the original point cloud along with the simplicial complex where the loop is born σ , and
where it dies σ ′. The corresponding attaching edges where these events occur are labeled as b and
d with vertices w(·) and v(·). The map B is used to map the point cloud to the persistence diagram.
The bottom row of Fig. 1.3 demonstrates the same process as the top row but on a perturbed point
cloud θ ′ where p2 → p′2 along û. The map B̃ represents the persistence map for the perturbed point
cloud and the resulting change in the persistence pair forms the derivative of the persistence map
B with respect to θ and B̃. Notationally, this is represented as d

θ ,B̃B [5].
This process is illustrated more generally and for 0D persistence in the example shown in

Fig. 1.4. In this diagram, the space of infinitesimal perturbations of the point cloud P is shown in
blue and this higher dimensional space is mapped onto a persistence diagram where the quotient
of the space collapses to the original persistence pair. For the particular perturbation shown we
see that the edge length is increasing so the derivative of B using the VR filtration with respect
to the perturbation P′, the corresponding persistence map B̃ is a vector in the vertical direction.
For higher dimensional simplices or PDs such as in Fig. 1.3, the process is the same, however,
we consider the rate of change of the attaching edge of the simplex or the edge whose inclusion
results in the birth of the simplex [4, 5]. Attaching edges are the output of the corresponding filter
function chosen. For example, if the VR filtration is used, the filter function for a simplex σ is
defined to be F(P)(σ) = maxi, j∈σ ||pi − p j||2 or the maximal distance between any two vertices
in the simplex [5] where ||·||2 is the l2 norm. Before the connectivity parameter reaches F(P)(σ),
σ remains unborn in the filtration. In this case, the map B corresponds to the composition of
the persistence map Dgmp and the filter function F [5]. Conditions of differentiability must be
considered for the input space being studied. If the input is a point cloud it must be in general
position [5, 6] (i.e., no two points in the cloud coincide or are equidistant). Nonetheless, if the
general position condition fails then the derivative likely still exists for the specified perturbation.
The issue is also mitigated numerically by cpu floating point precision and the constraints are
highly unlikely to be violated with real data [6]. If either condition is violated, small artificial noise
can also be introduced to guarantee the points are in general position and a unique perturbation

9

exists.

Figure 1.4 Persistence differentiation for point clouds. The point cloud P is perturbed to P′ and
the 0D persistence diagram is differentiated with respect to this perturbation.

For point cloud input data, the derivative of a persistence diagram is computed by labeling the
vertices of attaching edges for the birth σ and death σ ′ of a simplex as v(σ), w(σ) and v(σ ′),
w(σ ′) respectively for each attaching edge that results in the birth or death of a homology class.
An arbitrary perturbation P′ of the point cloud P is then considered. The attaching edge vertices
are tracked in the process allowing for each persistence pair to measure the direction of change and
construct the derivative of the persistence diagram with respect to that perturbation. The derivative
is represented by a list of vectors (one for each persistence pair) that describe the variation in the
persistence pairs with respect to a given perturbation P′. A unit direction vector û is used to store
the perturbation directions for each point. The derivative is then computed via an inner product of
the vector Pi, j =

pi−p j
||pi−p j||2 which describes the direction of change in length of the attaching edge

(i, j) and the perturbation vector û. Mathematically using the VR filtration, the derivative takes the
form,

dP,B̃B(û) =
[(

PT
v(σ),w(σ)û, PT

v(σ ′),w(σ ′)û
)m

i=1

]
, (1.2)

where dP,B̃B is the derivative of the persistence map B with respect to the perturbation persistence
map B̃ evaluated at the perturbation û [5]. Note that the form Eq. (1.2) has been represented for m
finite persistence pairs generalizations are presented in [5] from parameterization by Rips filtration
to present a formal framework for differentiation of persistence diagrams using maps between
smooth manifolds M and N through space of persistence diagrams with a general filter function
in [5]. This framework also includes generalizations to infinite persistence pairs, however, for this
work I am mainly interested in finite persistence pairs using the VR filter function.

One of the primary applications of this optimization comes from [4] where a TensorFlow
pipeline was developed using the Gudhi TDA library in python to optimize the positions of points
in a point cloud with gradient descent according to a predefined loss function. The loss function
in [4] was defined to maximize the total persistence or in other words expand the size of the loops in
the 1D persistence diagram. A term was also added to the cost function to regularize by restricting

10

the points to a square region of space. More loss functions can also be defined in terms of persistent
entropy to promote fewer loops in the point cloud and using the Wasserstein distance to achieve a
desired persistence diagram. The work in [6] outlines processes for carrying out optimization using
persistence based functions in the specific case of Vietoris-Rips complexes defined on point clouds.
Particularly, these methods allow for the user to supply a start and end persistence diagram along
with the starting point cloud. A Newton-Raphson root-finding process is then used to transform
the original point cloud into a new point cloud that has the desired homology.

1.1.4.1 Persistence Optimization Examples
Functions of persistence can be used to engineer loss functions to achieve desired topological

properties of a point cloud. This section includes examples of the persistence optimization process
using the TensorFlow and Gudhi pipeline from [4].

Loop Expansion: The first example aimed to increase the size of loops in the point cloud by
defining the cost function, L = −∑i|di − bi|+∑i max(|pi|−1,0). The first term in L is the total
persistence feature where (bi,di) is the i-th persistence pair. The second term is a regularization
to penalize points that are outside of a 2× 2 region of space. Figure 1.5 shows the starting point
cloud and 1D persistence diagram where points are sampled from a small circle. Performing the
optimization using L over 3000 epochs yielded the results in Fig. 1.6. The point cloud expanded
to fill the region until the regularization term prevented points from leaving the 2× 2 region. In
the persistence diagram, the 1D persistence pair moved vertically to have a final death time of
approximately 2 and the loss function plot indicates that a minimum has been reached.

Figure 1.5 Persistence optimization expanding loop example. Initial circular point cloud and 1D
persistence diagram.

Combining Persistence Functions: Loss functions can be defined to simultaneously promote
multiple topological features in the optimization process. For the first example the loss function
was defined as in the first example but a term was added max∑i(ℓi − ℓmax) where ℓi is the i-th
persistence lifetime. In other words, a lifetime larger than ℓmax penalizes the cost function and
for this specific example ℓmax was set to be 1. The initial point cloud for this method is shown in
Fig. 1.7 where points were randomly sampled within an annular region. The corresponding 1D
persistence diagram is shown on the right. Performing the optimization in this case resulted in

11

Figure 1.6 Persistence optimization expanding loop example. Resultant point cloud and 1D
persistence diagram after 3000 gradient descent steps using the corresponding cost function.

the point cloud and persistence diagram in Fig. 1.8 where the loops expanded in the point cloud
while ensuring that all persistence pairs remained below a lifetime of 1. The loss function was then
augmented to include a persistent entropy term E(D)=−∑i pi log2(pi) to lead to a simpler solution
to the problem. The initial point cloud was similar to the case in Fig. 1.7 and after performing the
optimization in this case, the resulting point cloud is shown in Fig. 1.9. It is clear that the entropy
term results in a point cloud with fewer loops and allows the loop sizes to get closer to the lifetime
restriction due to there being more space to grow a loop.

Figure 1.7 Initial point cloud for the second persistence optimization example. The cost function
was defined in the same way as the first example with the addition of a term to penalize lifetimes
larger than 1 or above the blue line.

1.2 Optimal Parameter Space Navigation
This leads to the first proposed project using persistence optimization for optimal parameter

space navigation of dynamical systems. The necessary dynamical systems and bifurcation back-
ground are given in Section 1.2.1 and 1.2.2.

1.2.1 Dynamical systems
I assume throughout that I have access to sampled realizations X = [x1, · · · ,xN] where xi ∈Rn of

a nonlinear dynamical system, and that µ⃗ ∈ RD is the vector of system parameters. I aim to locate

12

Figure 1.8 Final point cloud for the second persistence optimization example. The cost function
was defined in the same way as the first example with the addition of a term to penalize lifetimes
larger than 1 or above the blue line.

Figure 1.9 Resulting point cloud for the third persistence optimization example. The cost function
was defined to maximize loop size while restricting persistence pairs to have a lifetime less than
1. A persistent entropy term was added in this case to give a point cloud with fewer loops.

optimal paths in this space that connect an initial state to a desirable state while avoiding regions
of the space that lead to unsafe dynamics. To chart paths in the parameter space for model-free
systems it is important to consider bifurcation theory and timeseries analysis. As these tools are
standard in the field, I touch briefly on these topics and direct the interested reader to texts such
as [38–41] for further details.

1.2.2 Bifurcations in dynamical systems
Bifurcations can occur in both continuous and discrete time dynamical system and they are

characterized by qualitative changes in the response as one or more parameters (called the bifurca-
tion parameters) are varied. Bifurcations often indicate that the system is transitioning from normal
operation to an unsafe state. One visual tool for finding bifurcations is the bifurcation diagram,
which shows local extrema of a given system over a varying control parameter while keeping other
parameters fixed. As more bifurcation parameters are added, locating bifurcations becomes more
difficult as infinitely many paths exist between any two points in the parameter space.

13

1.2.3 Research Aim #1: Parameter Space Navigation Using Persistent Homology
Background: When the governing equations for a deterministic dynamical system are avail-
able, then there are tools that facilitate tracking the bifurcations as a parameter varies; although,
exhaustively tracking all the bifurcations is not a trivial task. One such tool is numerical contin-
uation [42–44], which is a path following approach that tracks the solution branches as system
parameters are varied. However, if the governing equations are not available or are too compli-
cated, then sometimes it is possible to track the solutions and the bifurcations of the underlying
dynamical system using Control-Based Continuation (CBC) [45–50]. CBC was successfully used
in many scientific domains including biochemistry [51], physics [52], mechanics [53], and fluid
dynamics [54]. In this setting, numerical continuation is applied to a feedback-controlled physical
experiment such that the control becomes non-invasive [50]. Treating the physical system as a
numerical model, control-based continuation allows systematic investigations of the bifurcations
in the system by treating the control target as a proxy for the state. Nevertheless, existing tools for
tracking bifurcation or exploring dynamic changes in state space remain limited to small spaces
with most of the time one and at most two bifurcation control parameters.

Therefore, there is a need for an intuitive, data-driven approach to navigating high dimensional
dynamical system parameter spaces to guide the system to an acceptable response. A framework
will be created with persistence optimization at its core to meet this need and will result in an
understanding of the map between parameter space dynamics and topological persistence. I will
accomplish this goal by completing three related tasks.

Task I: Currently, there is only a basic understanding of the general shape of a persistence di-
agram for a given dynamic state. For example a periodic response often contains a single 1D
persistence pair with a long lifetime. I aim to create a dictionary of persistence diagrams with
different traits that will allow the user to impose constraints on the problem. By combining these
criterion, a desired persistence diagram will be obtained effectively designing an objective function
for the optimization problem using topological characteristics of acceptable system behavior. So
in this setting, I will assume that there is a target persistence diagram that corresponds to desirable
criteria for the system response.

For example, the user may be searching for parameters that will result in a periodic solution
with an amplitude less than a certain value. It is easy to see that this would map into the persistence
diagram space as a 1D loop with a limited lifetime or death time minus birth time as shown in
Fig. 1.10(a). A corresponding state space representation of this idea is shown in the middle row and
potential cost function terms for achieving these behaviors are shown on the bottom row. Another
desired behavior could be for the system to have fixed point stability. In this case the desired
persistence diagram should have all of the loops close to the diagonal as shown in Fig. 1.10(b) and
the state space plot would have localized points to promote steady state stability. The third case
shown in Fig. 1.10(c) is an avenue for classifying chaotic behavior using the persistence diagram
by computing persistent entropy as in [55]. In the state space this could correspond to a safe region
being within a small annular region. I aim to classify many more criterion such as constraining the
frequency of the response. I conjecture that using sublevel persistence similar to [1] by controlling
the spacing between points, the response frequency can be limited. Together these criteria specified
by the user will form the desired characteristics of the target persistence diagram which will be used
for intuitive loss function engineering for computing the optimal path in the parameter space.

14

Figure 1.10 Example response criteria mapped into persistence diagrams. (a) Constraint on the
amplitude of a periodic solution, (b) Limiting persistent loops to be close to the diagonal to
encourage fixed point behavior, and (c) Using high persistent entropy to classify chaotic regions
in the persistence diagram.

Task II: Once the desired persistence diagram is identified, the objective is to move to a point in
the parameter space that results in obtaining a response that has a persistence diagram closest to the
desired diagram. For this task, I will research different search algorithms and optimization methods
to compute the optimal path that will minimize the cost function to promote the desired topological
properties. Given a starting point in the parameter space, there are many ways to determine which
direction to move. This task focuses on using scalar derivative-free optimization methods to sam-
ple points near the starting position in the parameter space to determine which direction gives a
persistence diagram that is closest to the desired behavior. To demonstrate the goal of this process,
I generated a path in a two dimensional parameter space in an optimal sense to drive the lorenz
system to a specified type of solution using topological features of the point clouds as shown in the
preliminary work in Section 1.2.4. There I show path generation for two potential sampling meth-
ods, however many more sampling methods will be researched such as implementing an adaptive
search region that can change shape based on previous sampling information. Specifically, I will
test the optimization methods discussed in Sections 1.1.2 to determine which method provides
a path that converges to the desired response in the fewest objective function evaluations while
adhering to the desired response criteria set from task I. Simple, low dimensional systems with
known behavior will be used at this step to benchmark the algorithms for different objectives such
as moving away from chaotic regions of the parameter space.

15

Task III: Scalar optimization methods are suitable when the objective function is carefully cho-
sen to provide the desired response, but persistence diagrams are more complex objects. In order
to produce a solution that has a persistence diagram closest to the desired diagram, multi-objective
optimization methods should be used. For this task, I will leverage the differentiability of persis-
tence diagrams [4–6] to the map that includes a function from the parameter space to time series

generating systems according to D B′
−−−−−→ M B−−−−−→ Pers V−−−−−→ R, where B′ is the map

from the parameter space D to the time series or state space point cloud. The goal is to check the
properties of the map B′ such as differentiability conditions to show that V ◦B ◦B′ fits within the
theoretical framework of [5] (V ◦B already fits with the map types used in [5]).

This will enable a gradient descent approach to moving through the parameter space using
the full persistence diagrams to move to a set of parameters that meet the criteria from task I.
I will utilize the search algorithms researched in task II in conjunction with the gradient of the
persistence diagrams approximate the gradient of B′ to locate a direction vector in the parameter
space and walk the system to the optimal response. The process is demonstrated graphically in
Fig. 1.11 where a 3-dimensional parameter space is shown in Fig. 1.11(a) with starting point in
red and to move to the next path point, a step is taken toward a minimizer of the loss function in
Fig. 1.11(d) and the step is propagated back using gradient descent through the persistence diagram
(Fig. 1.11(c)) and state space (Fig. 1.11(b)) to obtain a direction in the parameter space for the next
point on the path. The process is continued until a minimum is reached in the cost function. The
success of the framework will be evaluated based on speed of computation, convergence, and the
ability to reach the target persistence diagram while avoiding unsafe regions.

Figure 1.11 Diagram demonstrating the map from the parameter space to the loss function as
solving the inverse problem from taking a step against the gradient of the loss function to reach a
new set of parameters in the parameter space propagated through the persistence diagram and the
state space point cloud.

1.2.4 Preliminary work:
Figure 1.12 shows preliminary results for this project. Here, I considered the response optimal

if it had the largest 1D persistence lifetime in the region of the parameter space being searched.
This objective was constructed to promote periodic solutions over chaotic. Consider the Lorenz
system given by ẋ = σ(y− x), ẏ = x(ρ − z)− y, ż = xy−β z, where σ , ρ and β are system pa-

16

Figure 1.12 Lorenz system optimal parameter space paths using the global and local updating
schemes. Corresponding persistence diagrams are shown at three points to demonstrate the
topological differences between dynamic states.

rameters and x, y, and z are the system states. For now, I will restrict the parameter space to the
plane β = 8/3 and search for an optimal two dimensional path in the (ρ,σ) space. I further limit
the parameter space by setting ρ ∈ [80,300] and σ ∈ [4,50]. The system was then simulated over a
500×500 grid of parameters in the parameter space and the maximum 1D persistence lifetime was
plotted as an image along with a subset of the system trajectories in two dimensions as shown in
Fig. 1.12. For a given starting point in the parameter space, I aim to navigate this space optimally
to reach the point with the largest 1D persistence lifetime. In this region of the parameter space, the
optimal point was found to be (ρ,σ) = (300,4) using the simplicial homology global optimization
(SHGO) method.

1.2.4.1 Navigation Schemes
To generate the next point along the path towards the target state in Fig. 1.12, I used conven-

tional global optimization algorithms to find the maximum 1D persistence in a local region near
the starting point. A smaller sampling region highlighted in blue in Fig. 1.12b was chosen to ob-
tain a smoother path to the optimal point. I describe these two possible sampling schemes in the
following sections.

Global Sampling The first sampling method works by forming a rectangular region that grows
from the starting point in the parameter space and solving for the global optimizer within that
region. Let (x0,y0) be the starting point in the 2D parameter space and the global problem domain
Ω = {⃗µ = (x,y)∈ [xmin,xmax]× [ymin,ymax]}. The local search region is then generated as a fraction
of the global region by the sequence, Ωk = {(x,y) ∈ 1

N [(N − k)x0 + kxmin,(N − k)x0 + kxmax]×
1
N [(N − k)y0 + kymin,(N − k)y0 + kymax] : k = 1...N} where N is the number of desired path steps.
So as the step index k increases, the feasible region grows to fill the entire global region when
k = N. At each step k, we solve µk = argmaxµ∈Ωk f (⃗µ) to find the direction vector relative to
the current point. For this example, f (⃗µ) = max(H1) is the maximum 1D persistence lifetime of
the system simulation point cloud at a parameter input µ⃗ . Let µ̂ =

µk−µk−1
||µk−µk−1|| be the optimal unit

direction from the local optimization problem assuming the optimal point is not identical to the
current point. If this is the case, the path remains at the current point. If µ̂ is nonzero, the next
point on the path is computed as (xk,yk) = αµ̂ where α is the step size. Applying this updating

17

scheme to the Lorenz system with a starting parameter vector of (ρ,σ) = (153,45) with a constant
step size of 0.1 and path length of 2500 steps, I obtained the path shown in Fig. 1.12(a). It is
clear that as more steps are taken in the path, the algorithm eventually moves in the direction of the
optimal point and approaches it by the final step demonstrating optimal movement in the parameter
space to move the system to a periodic response.

Local Sampling The path found in Section 1.2.4.1 required data from the full parameter space
sampling region for solving the 2500 optimization problems. Simulation data is not always abun-
dantly available so it is important to have an algorithm that also minimizes the search region size
for the individual problems. To improve the path generation algorithm, I aim to use sampling
regions that are centered around the current point essentially forming a rectangular trust region.
The trust region is defined similar to Ωk in Section 1.2.4.1 with two critical modifications. First,
the region is based around (xk,yk) instead of (x0,y0), and second, I multiply the region by a con-
fidence factor γ ∈ [0,1] to allow for the size of the region to depend on the overall confidence
in the new direction vector rather than the step size. Together these changes make up the region
Ωk = {(x,y) ∈ (1− γ)[xk−1 −xmin,xmax −xk−1]× (1− γ)[yk−1 −ymin,ymax −yk−1] : k = 1...N}. As
γ → 1, we are more confident in the updated direction so the search region for the next step can
be reduced in size. Conversely, as γ → 0, we are less confident in the direction so the search size
approaches the full parameter space. To prevent the full parameter space from being used on the
first step, γ is initially set close to 1. To update the confidence factor, we use the component-wise
standard deviations of the direction vectors of the previous five steps. Because the direction vec-
tors are unit vectors, the largest standard deviation is bounded at one in the case that 50% of the
points are at −1 and the other 50% are at 1. For a general system with D-dimensional parameter
space µ⃗ = (µ1, ...,µD)

⊺ the confidence factor can be computed as γ = 1−∏
D
i=1 σ

(p)
i where σi is

the standard deviation of the previous p direction vectors of component i. Performing this updat-
ing algorithm on the lorenz system from the same starting point, the path shown in Fig. 1.12(b)
is obtained where the blue region around the path shows the significantly smaller sampling region
used by the navigation scheme to generate the path.

1.2.5 Research Aim #2: Numerical and Experimental Validation
I plan to perform extensive validation studies on the methods developed from the output of

research aim 1.

Numerical studies: To validate the path generating algorithms, numerical system simulations
will be conducted on nearly 40 dynamical systems with parameter spaces of dimension two or
larger in the teaspoon python library [56]. Results will be tested against conventional optimization
methods and the noise robustness of the algorithms will be quantified in the process.

Hall-Effect Thrusters: In addition to numerical validation, the proposed framework will be
experimentally validated on unique experimental data from Hall-effect Thrusters (HET). This data
will be obtained in collaboration with the AFRL Rocket Propulsion Division. The HET data is
collected from a sophisticated test chamber with continuous pumping to simulate the vacuum of
space. The complexity of this apparatus makes this data unattainable elsewhere. HETs are a class
of ion thrusters that generate thrust by accelerating ions through an electromagnetic field to eject

18

Figure 1.13 Hall-Effect Thruster (HET).

heavy ionized gas particles from the spacecraft. These thrusters are highly complex due to the
interplay of electrodynamics, fluid dynamics, fluid-structure interaction, and quantum mechanics
which makes them difficult or impossible to accurately simulate. Therefore, data driven methods
are essential for analyzing HETs.

HETs have shown great potential for future space flight due to their ability to greatly increase
the lifespan of the thruster to over 10,000 hours [57]. However, some of the operating modes in the
HETs lead to undesirable system dynamics such as high amplitude, low frequency breathing mode
oscillations in the thrust produced. This phenomena is due to a complex interaction between neutral
and ionized particles and leads to sub-optimal performance of the thruster [58]. Another behavior
that these thrusters exhibit is a result of high energy ions causing erosion of critical surfaces for the
thruster and the space craft which is detrimental to many of the components on board [58]. These
operating modes are induced by changes to the system parameters (shown in Fig. 1.13) such as the
discharge voltage Vd (the voltage between the anode a and cathode c), mass flow rate of gas ṁ,
magnetic field strength and topology B⃗, electric field strength E⃗ and discharge current Id [57, 58].
Therefore, when maneuvering the space craft by gradually changing the HET parameters, it is
important to chart an optimal path in the parameter space that avoids these unsafe/inefficient modes
of operation.

1.3 Topological Data Assimilation for Target Tracking
This section introduces a new data assimilation framework for optimal time series forecasting

and target tracking using the persistence optimization framework.

1.3.1 Time Series Forecasting
Time series forecasting is a critical component in data assimilation and these concepts are

necessary for understanding the data assimilation process. There are many methods for doing this
and this section will outline some of the classical approaches.

1.3.1.1 Autoregressive (AR) Forecasting
The autoregressive (AR(p)) model of order p works by assuming a model of the form,

Xn =
p

∑
i=1

ϕiXn−i + εn, (1.3)

19

where Xn are the predicted system states at the next time step n, ϕi are the model coefficients
learned from training data and εn is a noise term to prevent overfitting [59]. The order of the model
is usually determined by the value of p that results in the autocorrelation function being close to
zero [59].

1.3.1.2 Moving Average (MA) Forecasting
The moving average (MA(q)) model of order q works by assuming the model varies with

respect to the average according to the model,

Xn = µ +
q

∑
i=1

θiεn−i + εn, (1.4)

where µ is the average of the signal and θi are the model coefficients [59].

1.3.1.3 Autoregressive Moving Average (ARMA) Forecasting
These two methods can be combined using the AutoRegressive Moving Average or ARMA

model [59], which learns both ϕ and θ coefficients simultaneously and can be represented with a
model of the form,

Xn = µ +
q

∑
i=1

θiεn−i +
p

∑
i=1

ϕiXn−i + εn. (1.5)

Using the combined model assumes that the future states are a function of past states along with
a component that varies near the mean of the signal. The ARMA model can help reduce the total
number of coefficients required for accurate forecasting [59]. Many extensions to this model have
also been introduced such as the AutoRegressive Integrated Moving Average (ARIMA) which
allows for nonstationary signals, and the Seasonal AutoRegressive Integrated Moving Average
(SARIMA) allows for incorporating known a known period into the forecast [59].

1.3.1.4 Random Feature Map Forecasting
Random feature map forecasting is based on a machine learning approach that involves map-

ping the training data to high dimensional random features to learn a model in the new space [60].
This approach has been used for time series forecasting in [61] where random features of the form
φ(u)= tanh(Winu+bin) where Win ∈RDr×D and bin ∈RDr are the random weight matrix and bias
vector for the features sampled from uniform distributions and are fixed for training [61]. D is the
system dimension and Dr is the reservoir dimension or dimensionality of the random feature space.
The vector u ∈RD is the vector of system states and is assumed to come from a system of the form
u̇ = F(u). Mapping the training data into the random feature space using φ allows for obtaining a
surrogate model propagator map of the form ΨS = WLRφ(u) where WLR ∈RD×Dr optimally maps
the random features back to the D dimensional space to predict future states of the system. WLR is
obtained using ridge regression and the optimal solution is computed as W LR =UΦ

T (ΦΦ
T +β I)−1

where U ∈RD×N is a matrix of system states, N is the number of training observations, Φ ∈RDr×N

is the matrix of random features I is the Dr ×Dr identity matrix and β is the regularization param-
eter [59]. Random feature map forecasting was applied to the lorenz system ẋ1 = σ(x2 − x1),
ẋ2 = x1(ρ −x3)−x2, ẋ3 = x1x2−βx3 by setting parameters ρ = 105, σ = 10 and β = 8/3 to result
in chaotic dynamics. A reservoir dimension of 500 was used along with sampling the random

20

Figure 1.14 Random feature map forecast example using the chaotic lorenz system. the forecast
begins at the green vertical line and follows the true trajectory for a period of time before
deviating.

features from (Win)i j ∼U [−0.1,0.1] and (bin)i ∼U [−4.0,4.0]. Using these parameters, a forecast
for the lorenz system was generated using 1000 training data points resulting in the forecast shown
in Fig. 1.14. We see that the forecast follows the true trajectory for about 150 time steps before it
begins to deviate. In this example the time step chosen was 0.01 seconds. An inevitable truth of
time series forecasting is that the forecast will always eventually deviate from the true system tra-
jectory as long as the signal is not perfectly periodic which is uncommon for real data. In practice,
the signal values stream in as measurements are taken and the new measurements contain valuable
information for updating the forecasting model. However, measurement noise significantly hinders
the forecast ability of the models presented in this section. These limitations prompt the need for
a data assimilation approach for combining forecast models and measurement data to obtain an
optimal forecast.

1.3.2 Data Assimilation
Data assimilation, or state estimation is a method for optimally combining observed data from

multiple sources with model predictions to produce an improved prediction based on both [62–65].
Its use has shown successes across many fields such as weather forecasting, oceanography, and pre-
dicting the movement of pollution [62, 63, 66]. A common implementation of data assimilation is
the Kalman filter applied to dynamical systems where unmeasured system states or noisy mea-
surements are optimally estimated and a system forecast is generated by combining information
from all available measurements [61, 63]. This process is demonstrated in Fig. 1.15 where the

21

observations move the model results closer to the ground truth to improve the predictions. In data
assimilation, observed data streams are combined by solving for optimal weights on data streams to
place more importance on sources with lower uncertainties typically by minimizing a cost function
of the form [62]

J(⃗x) = (⃗x− x⃗b)
T B−1(⃗x− x⃗b)+ (⃗y−h(⃗x))T R−1(⃗y−h(⃗x)), (1.6)

where x⃗b ∈ Rn is the vector of model prediction results, B is the covariance matrix for the model,
y⃗ ∈ Rm is the vector of observations and h is the operator that projects the input vector onto the
space of observations, and R is the covariance matrix for the measurements [62]. Thus finding,

Figure 1.15 Data Assimilation Concept—Improving model results by considering observations to
obtain an estimation closer to the ground truth.

x⃗a = argminJ(⃗x), yields an optimal combination of the model predictions and measurement results
[62] where xa is referred to as the analysis solution. It was shown in [62] that x⃗a can be written as
x⃗a = x⃗b +K(⃗y− h(⃗xb)) for some weighting matrix K in terms of the covariance matrices and the
operator h. The distances in Eq. (1.6) are computed using the Euclidean metric. Other considered
metrics such as the Wasserstein distance measures pairwise dissimilarity between ground truth and
model predictions enabling the use of topologically based cost functions [67]. This is done by
generalizing the cost function in Eq. (1.6) using an arbitrary metric of the form, J(⃗x) = db(⃗x, x⃗b)+
dy(⃗y,h(⃗x)), where db is the model discrepancy and dy is the observation discrepancy.

1.3.3 Topological Data Learning for Target Tracking
I plan to use a data driven approach to obtain a surrogate model of a given targets’ trajectory

from time series-like data and improve the model based on new observations. It is assumed that the
measurements do not span the full state space of the system and that they are infected with noise.
Generally surrogate modeling is divided into two broad categories: data-driven and physically-
based [68]. The data-driven approach, with access to vast data banks, is selected as the tracking
methodology due to target complexities. Many different approaches have been taken in data-driven
surrogate modeling such as Bayesian networks, transfer functions, and regression with the results
being application dependent [68–70]. Recently, a surrogate modeling approach was combined
with a data assimilation algorithm to improve the model in real-time [61, 71]. The method utilizes
random feature map forecasting to learn a model for the system at the next time step using ridge
regression based on previous noisy measurements.

The method in [71] assumes access to the full state space measurements and it was generalized
to the case where only one state is measured in [61]. It assumes that only partial observations are
available to the system and employs the Takens embedding to reconstruct the attractor for the sys-
tem based on a single measurement [61]. A data assimilation algorithm (ensemble Kalman filter)

22

is then used to optimally estimate the states at the next time step based on the next measurement,
and the accurate forecasting times were found to be significantly longer when compared with only
using linear regression. The method is referred to as Random Feature Maps and Data Assimilation
(RAFDA) [61,71]. This method requires ensemble sampling of the measurements to generate data
that can be used to obtain an optimal estimate based on the known noise statistics. While RAFDA
integrates data assimilation in the training process and it has been demonstrated that it results in
improved forecast horizons with respect to the traditional random feature map forecasting, it will
still break down eventually as more measurements stream in. The goal of this research task is to
perform data fusion from many different time series-like data modalities to estimate an optimal
model for a targets trajectory for forecasting future system states at future times leveraging the
inherent connection between dynamical systems and topology. This connection will implement
persistence optimization to define a cost function that leads to a new topological data assimilation
framework. This goal will be accomplished using the method outlined in 1.3.3.1.

1.3.3.1 Methodology
To efficiently combine data from many different modalities and obtain an accurate model for

target tracking, I propose to integrate the random feature map and RAFDA forecasting methods
with a new data assimilation scheme driven by TDA to optimally combine learned models from
each modality based on noise characteristics of the measurements and improve forecast horizons.
More specifically, this method will work by assuming that I have N sensor observations with ad-
ditive noise. These measurements will then be used for generating a forecast model using any of
the methods in Section 1.3.1 such as random feature maps. I will then compute persistence on the
measurement data (potentially 0D and 1D) and compute persistence on the forecast model. Using
the Wasserstein distance, the dissimilarity between these two diagrams can be quantified and per-
sistence optimization can be used to minimize the Wasserstein distance between them. This will
give a new forecast model that has a persistence diagram that is closer to the observation persis-
tence diagram. The new forecast makes up the analysis which is fed back into the loop to be used
as the model in the next assimilation window and the process is continued as new observations
stream in. The cost functions will be defined in terms of common discrepancy measures between
persistence diagrams such as the Wasserstein and bottleneck distances similar to [67] and persis-
tence optimization will be exploited to compute a new, optimal forecast for all of the input time
series signals. This will yield a combined model that utilizes information from all input signals
and naturally favors the signals that are more significant to the behavior of the system by learning
a local minimum of the cost function to filter noise from the signals in the persistence diagrams.
As new measurements are obtained, the analysis solution is used as the forecast model in the next
assimilation window and the process is repeated. A schematic diagram for this process is shown in
Fig. 1.16 where the N measurements are used to generate a forecast model and the two persistence
diagrams are compared to yield an optimal forecast for the next measurements.

1.3.4 Preliminary Results
I generated preliminary results for this pipeline by performing persistence optimization using

the Wasserstein distance to obtain a point cloud with a target persistence diagram. I started with
the circular point cloud shown in Fig. 1.17 where the red persistence pairs indicate the starting 1D
persistence diagram and the green point is a constructed target persistence diagram. Using a cost

23

Figure 1.16 Schematic diagram for integrating target tracking models and data fusion/assimilation
with topological data analysis using forecasting to estimate models from the data and persistence
optimization approaches to optimally combine the signals for the next assimilation window.

Figure 1.17 Starting point cloud and 1D persistence diagram for optimization using the
Wasserstein distance. The target persistence diagram was constructed with the green point and the
actual persistence diagram is indicated using red points.

function of the form J = W (PDc,PDt) where W is the Wasserstein distance, PDc is the current
persistence diagram (or forecast model persistence diagram) and PDt is the target diagram (or
measurement persistence diagram). J has a clear minimizer at 0 where the persistence diagrams
are identical. Performing the optimization process yielded the result in Fig. 1.18 where the point
cloud expanded to reach the target persistence diagram. The same process was performed but the
target persistence diagram was modified by adding points near the diagonal to simulate persistence
pairs due to noise in the measurements. Using the same cost function and starting point cloud the
positions of points were optimized according to the Wasserstein distance. Doing this resulted in
Fig. 1.19 where it is clear that the prominent topological features of the target persistence diagram
were learned by finding a local minimum of the cost function and filtering out the features due to
noise. These results suggest that this method will be successful in a data assimilation framework
because the noise will be effectively filtered from the observations.

24

Figure 1.18 Persistence optimization results when minimizing the Wasserstein distance between
the model and measurement persistence diagrams with no noise in the target persistence diagram.

Figure 1.19 Persistence optimization results when minimizing the Wasserstein distance between
the model and measurement persistence diagrams with artificial noise in the target persistence
diagram.

25

CHAPTER 2

TIME SERIES REPRESENTATIONS
This chapter outlines my work studying different time series representations. Network represen-
tations are studied Section 2.1 where I include my work performing dynamic state identification
methods using persistent homology of coarse-grained state space networks. Time delay embed-
dings for attractor reconstruction are also studied in Section 2.2 where novel methods for embed-
ding delay estimation using persistent homology are shown.

2.1 Persistent Homology of Coarse Grained State Space Networks
This work is dedicated to the topological analysis of complex transitional networks for dynamic

state detection. Transitional networks are formed from time series data and are typically studied
using tools from graph theory to reveal information about the underlying dynamical system. How-
ever, traditional tools can fail to summarize the often complex topology present in such graphs.
In this work we leverage persistent homology from Topological Data Analysis (TDA) to study the
structure of these networks. Namely, we study the persistent homology of the Ordinal Partition
Network (OPN) and Coarse Grained State Space Network (CGSSN) and analyze their dynamic
state detection performance. The results show that the persistent homology of the CGSSN was
able to accurately classify with 100% accuracy the dynamic state of 22 dynamical systems in com-
parison to the OPN at most having 95% accuracy. Additionally, we show that the CGSSN is more
noise robust compared to OPNs with maximum allowable SNRs of 23 dB and 32 dB, respectively,
for the Rossler system.

2.1.1 Introduction
Signal processing has been successfully and widely utilized to extract meaningful informa-

tion from time series of dynamical systems including dynamic state detection [72–77], structural
health monitoring for damage detection [78–82], and biological health monitoring [83–89]. A
promising direction for signal processing is through studying the shape of signals. This is done by
implementing tools from Topological Data Analysis (TDA) [18, 90] to study the shape of the at-
tractor of the underlying dynamical system. This field of signal processing is known as Topological
Signal Processing (TSP) [91], which has had many successful applications, including biological
signal processing [92, 93], dynamic state detection [55, 94], manufacturing [3, 95–98], financial
data analysis [99–102], video processing [103, 104], bifurcation detection [2], and weather analy-
sis [105, 106].

The standard pipeline for TSP constructs a filtration of simplicial complexes (called the Vietoris-
Rips complex) based on point cloud data generated from the State Space Reconstruction (SSR) of
an input time series [98, 107–109]. Given a uniformly sampled signal x = [x1,x2, . . . ,xL], the SSR
(also called the delay embedding) consists of n-dimensional delayed vectors

X = {vi = [xi,xi+τ ,xi+2τ , . . . ,xi+τ(n−1)] | i ∈ {1, . . . ,L− τ(n−1)}}. (2.1)

A simplicial complex is formed by including simplices for all collections of points which are within
distance r of each other. We can measure the shape of the simplicial complex by forming simplicial
complexes at increasing values of r, and tracking the changing homology through a linear mapping.
This allows for quantifying when specific topologies form and disappear throughout the filtration

26

giving a sense of shape. The persistence diagram encodes this information for various dimensions,
e.g., connected components (dimension zero), loops (dimension one), voids (dimension two). For
example, one can examine the one dimensional homology to track loop structures in the SSR that
are related to the periodicity of the signal. A problem with this pipeline is its computational demand
having complexity O(N3), where N =

(n
d+1

)
is the size of the simplicial complex with n as the

number of points in the simplical complex and d as the maximum dimension of the used homology.
For long signals, this makes this standard pipeline computationally infeasible. A common solution
is to subsample the point cloud, but it can be challenging to select an appropriate subsampling rate
that preserves the topology of interest.

An alternative, promising direction for signal processing is analyzing time series via repre-
sentations as complex networks [110–112]. Network representations of time series generally fall
within three categories: proximity networks, visibility graphs, and transitional networks. Prox-
imity networks are formed from closeness conditions in the reconstructed state space. Examples
include the k-Nearest Neighbors (k-NN) [113] and recurrence networks [114], where the recur-
rence network is the network underlying the Vietoris-Rips complex of the point cloud data. For
proximity networks, the graph representation includes all points in the state space reconstruction
as part of the vertex set and does not reduce the computational complexity. Additionally, these
networks require choosing a proximity parameter dependent on the signal, where careful consider-
ation is needed in selecting the number of neighbors k or proximity distance ε to generate a graph
that captures the correct topology. The visibility graphs [115] are formed by adding vertices for
each data point and adding connecting edges if a visibility line can be drawn between the two
vertices which do not pass below any other data point between the two. As our focus in this work
is on building upon the strong theory developed for the SSR embedding, we will not utilize the
visibility graph constructions at this stage. Instead, in this work we focus on transitional networks.

Transitional networks partition a time series x such that it has a vertex set of states {si} for
each visited state and an edge for temporal transitions between states. The resulting transitional
network constitutes a finite state space A as the alphabet of possible states. One interpretation
of a topological system on a finite state space is as a finite graph where the edges describe the
action of a function φ , i.e., if there is a directed edge from vertex a to vertex b, then φ(a) = b.
Therefore, the transitional networks we obtain from a time series are topological systems, and
they yield themselves to further analysis within the framework of topological dynamics. The two
most common transitional networks for time series analysis are the Ordinal Partition Network
(OPN) [116] and the Coarse Grained State Space Network (CGSSN) [117–120]. In Fig. 2.1 we
demonstrate the rich topological structure of the CGSSN for periodic and chaotic dynamics from
the Rossler system. This example shows the periodic dynamics corresponding to an approximate
cycle graph while the network of the chaotic signal is highly intertwined.

To date, the majority of evaluation of these complex network representations is through stan-
dard graph theory tools [112, 116, 121, 122], but the results can only provide local structural mea-
surements based on the node degree distribution or shortest path measurements. In our previous
work [55], we studied the global shape of these networks using persistent homology for dynamic
state detection using the ordinal partition network. However, we only used the shortest unweighted
path to define distances between nodes, which discarded edge weight and direction information.
In our recent work [123] we investigate the use of weighted edge information based on the number
of edge transitions. We found that this improved dynamic state detection performance.

However, we show here that there is an issue with the OPN, namely, amplitude information is

27

Figure 2.1 Example periodic and chaotic CGSSNs generated from the x(t) solution to the Rössler
system.

discarded because the ordinal partition network is built from permutations. Permutations can be
thought of as partitioning the state space via intersections of hyperplanes of the form xi ≤ x j. As
such, the resulting OPN can have reduced dynamic state detection performance and extreme sen-
sitivity to additive noise for some signals. This can be partially explained by noting that proximity
of the trajectory to the hyperdiagonal can cause failures in network construction, particularly when
there is noise in the signal (details of this issue are provided in Section 2.1.4.5). Further, due to
the hyperdiagonal intersection issue, we cannot guarantee the stability of the persistence diagram
for all signals. Therefore, we turn our attention to the CGSSN to bypass the limitations in OPN.
We investigate the applicability of the CGSSN for enhanced noise robustness and dynamic state
detection compared to the OPN. The results presented are based on analyzing the complex net-
works using persistent homology and tools from information theory and machine learning. Our re-
sults show an improvement in dynamic state detection performance with 100% separation between
periodic from chaotic dynamics for noise-free signals using a nonlinear support vector machine
compared to at most 95% for the OPN. Additionally, we show an improved noise robustness with
the CGSSN functioning down to a signal-to-noise ratio of 22 dB compared to 29 dB for the OPN.

Organization
In Section 2.1.2 we overview the necessary background information. We begin with an in-

troduction to the two transitional networks we study—OPN and CGSSN—and an overview of
how they are related to state space reconstruction. Next, we introduce four standard methods for
measuring the distance between nodes in a weighted graph. We subsequently describe persis-
tent homology and how it is applied to study the shape of the weighted complex networks. In
Section 2.1.3, we demonstrate how to apply our pipeline for studying the shape of complex tran-
sitional networks for a simple periodic example. In Section 2.1.4, we show results for studying
the persistent homology of both the OPN and CGSSN. We begin with results for dynamic state
detection for the Lorenz system with a periodic and chaotic response. We then apply the method to
23 continuous dynamical systems, and utilize machine learning to quantify the dynamic state de-
tection performance over a broad range of signals. Lastly, we show results on the noise robustness
of the CGSSN in comparison to the OPN. In Section 2.1.5, we provide conclusions future work on
applying persistent homology to study the structure of transitional networks.

28

Figure 2.2 Example formation of a weighted transitional network as a graph (middle figure) and
adjacency matrix (right figure) given a state sequence S (left figure).

2.1.2 Background

2.1.2.1 Transitional Complex Networks
A graph G = (V,E) is a collection of vertices V and edges E = (u,v) ⊆ V ×V . We assume

all graphs are simple (no self-loops or hypergraphs) and undirected. Additional stored information
comes as a weighted graph, G = (V,E,ω) where ω : E → R≥0 gives a non-negative weight for
each edge in the graph. Given an ordering of the vertices V = {v1, . . . ,vn}, a graph can be stored
in an adjacency matrix A where the weighting information is stored by setting Ai j = w(vi,v j) if
(vi,v j) ∈ E and 1 otherwise.

Transitional networks are graphs formed from a chronologically ordered sequence of symbols
or states derived from the time series data. In our construction, these states are mapped from
the measurement signal by first creating an SSR X from Eq. (2.1) and then assigning a symbolic
representation for each vector vi ∈ X. To form a symbolic sequence from the time series data, we
implement a function to map the SSR to symbol in the alphabet A of possible states as f : vi → s j,
where s j ∈ A is a symbol from the alphabet. In this work, we consider the symbols from the
alphabet as integers such that si ∈Z∩ [1,N], where N is the number of possible symbols. Applying
this mapping over all embedding vectors we get a symbol sequence as S = [s1,s2, . . . ,sL−τ(n−1)].
This work investigates two methods for mapping SSR vectors vi to symbols s j. The first is the
OPN which is defined in Section 2.1.2.2 and is based on permutations. The second method is the
CGSSN defined in section 2.1.2.3 which uses an equal-sized hypercube tessellation.

The symbol sequence S forms a transitional network by considering a graph G = (V,E), where
the vertices V are the collection of the used symbols, and the edges are added based on transitions
between symbols in S. We represent the graph using the adjacency matrix A data structure of
size N ×N. We add edges to the adjacency matrix A via the symbolic transitions with an edge
between row si and column si+1 for each i. This is represented in the adjacency matrix structure by
incrementing the value of Asi,s j by one for each transition between si and ss+1, where A begins as
a zero matrix. We set the total number of transitions between two nodes as the edge weight w(si,s j).
We ignore self-loops by setting the diagonal of A to zero. To better illustrate the transitional
network formation process, consider the simple cycle shown in Fig. 2.2. In this example, we take
the state sequence S on the left side of Fig. 2.2 with symbols in the alphabet A = [1,2,3,4] and
create the network shown network in the middle of the figure. This network is represented as a
directed and weighted adjacency matrix, as shown on the right side of Fig. 2.2. In this paper, we
discard the directionality information and make A symmetric by adding its transpose, A+AT .

29

2.1.2.2 Ordinal Partition Network
To form an OPN, the SSR X must first be constructed requiring the choice of two parameters:

the delay τ and dimension n. We select the delay τ using the method of multi-scale permutation
entropy [124, 125] and the dimension as n = 7 as suggested for permutation entropy [125, 125].
For the OPN, the vector vi is assigned to a permutation π based on its ordinal partition. For
dimension n there are n! permutations (e.g., 6 possible permutations for dimension n = 3 shown in
Fig. 2.3) which can order arbitrarily π1, · · ·πn!. Then vi is assigned to a permutation πk following
that πk satisfies vi(πk(0)) ≤ vi(πk(1)) ≤ ·· · ≤ vi(πk(n− 1)). An example of this for the vector
vi = [−0.08,0.48,−0.34] is shown on the top Ordinal Partition (OP) route of Fig. 2.3 where vi is
mapped to permutation π5 and state si = 5.

Figure 2.3 Example state assignment using the Ordinal Partition (OP) method (top) and Coarse
Graining (CG) method (bottom). The state for the OP method is based on the assigned
permutation number with si = 5 for the example. The state assignment for the CG method is
based on the number of bins where si = 1+∑

n−1
j=0 ρi(j)b j, ρi is the digitization of vector vi based

on binning into b equal-sized bins spanning [min(x),max(x)]. For this example,
si = 3(80)+5(81)+2(82)+1 = 172 with b = 8 bins.

2.1.2.3 Coarse Grained State Space Network
The CGSSN begins by constructing the SSR, where we select the delay τ using the multi-scale

permutation entropy method [124, 125] and dimension n using the false nearest neighbors [126]
based on only needing a dimension great enough for periodic orbits to not self-intersect. For the
CGSSN, the vector vi ∈ X is assigned to a state based on which partitioned region the vector
vi lies within. We define the domain D of the SSR as the non-empty connected, open set that
encloses all vectors of the SSR. Specifically, we use an n-dimensional hypercube domain bounded
by the intervals [min(x),max(x)] for each dimension. In this work we cover this domain using a
tessellation of N = bn hypercubes with side length (max(x)−min(x))/b, where b is the number of

30

bins per dimension. We assign each n-dimensional hypercube in the tessellation a unique symbol
by converting it to a decimal representation denoted as si. An introductory example formation of
the entire CGSSN for a sinusoidal function is provided in Section 2.1.3. Some generalizations
exist to the described method where instead of assigning symbols to the individual hypercubes,
we could assign words of length m which would allow for studying a sequence of coarse grained
states of the system which reduces the information load in the process [127]. For the purpose of
this paper, a symbolic representation was sufficient.

2.1.2.4 Vertex similarity and dissimilarity measures
To study the structure of the complex network we define functions of the form V ×V → R≥0

combining information about path lengths and weights from the graph in various ways. Some of
these definitions are distances, but not all. Despite this, the framework can still be used to define a
filtered simplicial complex in the spirit of the Vietoris Rips complex which will be required in the
next section.

The measures are encoded in a matrix D, where D(a,b) is the similarity or dissimilarity be-
tween vertices a and b. Note that D can optionally be normalized by dividing all entries by its
maximum value to contain values between 0 and 1. We investigated the use of four choices of mea-
sures: the unweighted shortest path distance, the shortest weighted path dissimilarity, the weighted
shortest path distance, and the diffusion distance.

Shortest Path Distances and Dissimilarities Commonly used in graph theory, the shortest path
distance is based on minimizing the cost of taking a path from node a to b. This assumes a path
P = [n0,n1, . . . ,ns] consisting of s nodes where a = n0 and b = ns exists, but we note that all graphs
in this paper are connected by construction. The path P can alternatively be represented as the
sequence of connected edges between a and b: P = [e0,1,e1,2, . . . ,es−1,s]. The shortest path is
determined based on minimizing the path cost function

C(P) = ∑
e∈P

w(e). (2.2)

In the case of an weighted graph, we then define D(a,b) = minPC(P). Note that in the case of an
unweighted graph, we have all weights equal to 1 and thus the cost of a path is simply the number
of edges included in it.

We next define two variations on this idea, although they are not quite distances but are useful
for the kinds of input graph data we study. In particular, the weights on edges are higher for those
that are more highly traversed with the transitional networks. We thus want these paths to be
considered more important than those only traversed a few times. To that end, we will focus on
paths whose length using the reciprocal of the weights is as small as possible.

The first variation, called the weighted shortest path measure, is defined as follows. First, we
find the path from a to b with the minimum total path weight in terms of the reciprocal weights.
That is, P such that

C′(P) = ∑
e∈P

1/w(e). (2.3)

is minimized. We then define D(a,b) = ∑e∈P w(e). For this definition, D encodes information
about frequency of traversal of the edges.

31

The second variation, called the shortest weighted path, still uses the path P for which C′(P) is
minimized. However, in this case, we define D(a,b) to be the length of the path; i.e. the number
of edges in P. For this variant, we are essentially giving higher priority to well traveled paths, but
using a measurement of this path related to the number of regions of state space are traversed.

Diffusion Distance The final vertex similarity measure we use is the diffusion distance for
graphs [128]. The diffusion distance leverages the transition probability distribution matrix P
of the graph, where P(a,b) is the probability of transitioning to b when at a in a single step based
on the random walk framework. Specifically, given the weighted, undirected adjacency matrix A
with no self-loops (i.e., zero diagonal), the transitional probability matrix is

P(i, j) =
A(i, j)

∑
|V |
k=1 A(i,k)

. (2.4)

Equation (2.4) can be extended to calculate the transition probabilities for non-adjacent neighbors
by raising them to higher powers. For example, transitioning to vertex b from vertex a in t random
walk steps is Pt(a,b). A common modification of Eq. (2.4) is to include a probability that a random
walk can stay at the current vertex, which is commonly referred to as the lazy transition probability
matrix. This is given by

P̃ =
1
2
[P(a,b)+ I] , (2.5)

where I is the identity matrix matching the size of P. The diffusion distance measures how similar
two nodes are based on comparing their t-step random walk probability distributions. This is done
by taking the degree-normalized ℓ2 norm of the probability distributions between nodes and is
calculated as

dt(a,b) =

√
∑
c∈V

1
d(c)

[
P̃t(a,c)− P̃t(b,c)

]2
(2.6)

where d is the degree vector of the graph with d(i) as the degree of node i. Applying the diffusion
distance to all node pairs results in the distance matrix Dt .

2.1.2.5 Persistent Homology of Complex Networks
A simplicial complex is a generalization of a graph to higher dimensions, which are collections

of simplices at various dimensions (e.g., points are zero-dimensional, edges are one-dimensional,
and faces are two-dimensional simplices). These simplices are subsets of a vertex set σ ⊂V , and
we require for the complex that if σ ∈ K and τ ⊆ σ , then τ is also in K. Using a distance matrix
to describe similarity between nodes, or indeed any function of the form d : V ×V → R where
d(v,v) = 0 although we still call this a distance matrix for simplicity, we can construct simplicial
complex representations from graphs at a distance level r. This idea is related to the Vietoris Rips
complex, where we build a simplicial complex Kr for any fixed parameter r ≥ 0 by including all
simplices with pairwise relationships at most r; i.e. Kr = {σ ⊆ V | d(u,v) ≤ r for all u,v ∈ σ}.
Zero-dimensional simplices, the vertices of the complex, are all added at r = 0. An edge uv, which
is a 1-dimensional simplex, is present in Kr for any r value above d(u,v). Higher dimensional
simplices such as triangles are included when all subedges are present; equivalently this means a
simplex is added for every clique in the complex. For example, consider Fig. 2.4 which shows a

32

D

K0.0 K0.5 K1.0 K1.5 K2.0

Figure 2.4 Example demonstrating persistent homology of a graph using the matrix D with
resulting persistence diagram shown top right. The filtration of simplicial complexes are shown in
the bottom row.

graph with four nodes, and the associated distance matrix D. For each r ∈ [0.0,0.5,1.0,1.5,2.0]
the associated simplicial complex is shown as Kr in the bottom row.

We can use homology [11, 129] to measure the shape of any such simplicial complex K which
is denoted Hd(K). This mathematical object is a vector space, where elements are representative
of d-dimensional features (i.e., connected components (zero-dimensional structure), loops (one-
dimensional structure), voids (two-dimensional structure), and higher dimensional analogues) in
K. In this work we will only utilize the 0-dimensional and 1-dimensional features to measure the
connected components and holes in the simplicial complex. For example, consider the simplicial
complex Kr at r = 1.0 in Fig. 2.4, which has one H0 classes with a single connected component
and one H1 class with a single loop or hole in the simplicial complex.

An issue with just using homology to measure the shape of a simplicial complex to understand
the shape of a graph is that the correct distance value r needs to be selected. Additionally, it
does not provide any information on the geometry or size of the underlying graph. To alleviate
these issue we use persistent homology [130], which studies the changing homology of a sequence
of simplicial complexes. We will again use Fig. 2.4 as an example for demonstrating how the
persistent homology is calculated. To calculate the persistent homology we begin with a collection
of nested simplicial complexes

Kr1 ⊆ Kr2 ⊆ ·· · ⊆ KrN .

The bottom row of Fig. 2.4 shows an example of this filtration over the distance parameter r with
Kr=1.0 ⊆ Kr=0.5 ⊆ ·· · ⊆ Kr=2.0. We then calculate the homology of each simplicial complex and
create linear maps between each homology class for each dimension d as

Hd(Kr1)→ Hd(Kr1)→ ··· → Hd(KrN).

33

Figure 2.5 Pipeline for studying transitional networks using persistent homology. From left to
right, we begin with a signal or time series and represent it as a state sequence which is
summarized using a transitional network as described in Section 2.1.2.1. A distance between
nodes is then used to create a distance matrix (see Section 2.1.2.4 for graph distances) which can
be directly analyzed using persistent homology shown in Section 2.2.2.4.

By studying the formation and disappearance of homology classes we can understand the shape
of the underlying graph. Specifically, class [α] ∈ Hd(Kri) is said to be born at ri if it is not in
the image of the map Hd(Kri−1) → Hd(Kri). The same class dies at r j if [α] ̸= 0 in Hd(Kr j−1)
but [α] = 0 in Hd(Kr j). In the case of 0-dimensional persistence, this feature is encoding the
appearance of a new connected component at Kri that was not there previously, and which merges
with an older component entering Kr j . For 1-dimensional homology, this is the formation (birth)
and disappearance (death) of a loop structure. We store this information in what is known as
the persistence diagram using the persistence pair xi = (bi,di) ∈ Dd , where Dd is the persistence
diagram of dimension d with a homology class of dimension d being born at filtration value bi
and dying at di. We also define the lifetime or persistence of a persistence pair as ℓi = pers(xi) =
di −bi. The set of lifetimes for dimension d is defined as Ld . For a more detailed roadmap for the
calculation of persistent homology we direct the reader to the work of Otter et al [131].

Returning to our example, the persistence diagram is shown in Fig. 2.4 for both D0 and D1.
For D0 all four persistence pairs were born at r = 0.0 with one dying at r = 0.5 and two dying at
r = 1.0. The fourth persistence pair in D0, not drawn, is an infinite-class dying at ∞ since there is
a single component for r ≥ 1.0. In this work we do not utilize infinite-class persistence pairs and
will not include them in the persistence diagrams. For D1 there is a single persistence pair born at
r = 1.0 with the formation of the loop in K1 and filling in at K2.

2.1.3 Method
This section describes the method for studying complex transitional networks using persistent

homology. The pipeline for doing this is outlined in Fig. 2.5. We begin with a signal or time
series and represent it as a state sequence described in Section 2.1.2.1. The state sequence can be
summarized using a weighted transitional network as described in Sec. 2.1.2.1. A distance between
nodes (see Section 2.1.2.4) is then used to create a distance matrix which can be directly analyzed
using persistent homology as described in Section 2.2.2.4.

To further describe the method we develop here, we use a simple periodic signal example
shown in Fig. 2.6. The signal is defined as x(t) = sin(πt) sampled at a uniform rate of fs = 50
Hz. The SSR was constructed using n = 2 and τ = 26. For this example, we create the CGSSN
by partitioning the SSR domain into 100 rectangular regions as states, each with a unique symbol.
The states visited through the SSR trajectory are highlighted in red. The temporal tracking of
the states used creates the state sequence, which is then represented as the cycle graph. This
example demonstrates how the periodic nature of the signal is captured by the cycle structure of

34

(a) (b)

Figure 2.6 Example demonstrating CGSSN formation procedure (b = 10) with the signal
x(t) = sin(t) embedded into R2 space using an SSR and analysis using persistent homology with
the unweighted shortest path distance. (a) Formation of the CGSSN from a time series signal and
its delayed signal, (b) The distance matrix and associated persistence diagram using the
unweighted shortest path distance.

the corresponding CGSSN.
We define a distance between nodes using the unweighted shortest path distance for this exam-

ple due to its simplicity. The corresponding distance matrix and resulting persistence diagram are
shown. The resulting persistence diagram shows that the periodic structure of the underlying time
series and corresponding CGSSN is captured by the single point in the persistence diagram D1 at
coordinate (1,12) with the loop structure being born at a filtration distance of 1 and filling in 12.

2.1.4 Results
This section shows that the CGSSN outperforms the previously used OPN for both noise ro-

bustness and dynamic state detection performance. We first begin in Section 2.1.4.1 where we pro-
vide a simple example highlighting improved dynamic state detection performance of the CGSSN
over the OPN for a periodic and chaotic Rossler system simulation. We show these results us-
ing the persistent entropy summary statistic. The second result in Section 2.1.4.2 quantifies the
dynamic state detection, of the OPN and CGSSN using lower dimensional embedding on 23 con-
tinuous dynamical systems with periodic and chaotic simulations. Lastly, in Section 2.1.4.5, we
empirically investigate the noise robustness of the CGSSN compared to the OPN.

2.1.4.1 Dynamic State Detection for Rossler System
Our first result is from a study of the complex network topology of OPNs compared to CGSSNs.

To demonstrate the difference and motivate why the CGSSN outperforms the OPN in terms of dy-
namic state detection, we use an x(t) simulation of the Rossler system defined as

dx
dt

=−y− z,
dy
dt

= x+ay,
dz
dt

= b+ z(x− c). (2.7)

We simulated Eq. (2.26) using the scipy odeint solver for t ∈ [0,1000] with only the last 230
seconds used to avoid transients. The signal was sampled at a rate of fs = 22 Hz. For periodic
dynamics we use system parameters of [a,b,c] = [0.1,0.2,14] and for chaotic we set a = 0.15.
These simulated signals are shown in Fig. 2.7. To create the OPNs for both signals, we used an
embedding delay τ = 43 selected using the multi-scale permutation entropy method and dimension
n = 7. The corresponding networks are shown in the second column of Fig. 2.7. To form the
CGSSNs we similarly chose τ = 43, but used dimension n = 4 and b = 12 for partitioning the SSR
with resulting networks shown in the third column.

35

(a) (b) (c)

(d) (e) (f)

Figure 2.7 Transitional complex network topology comparison between OPN and CGSSN for the
x(t) simulation of the Rossler system described in Eq. (2.26). (a) Periodic Rossler Simulation
x(t), (b) Periodic OPN (n = 7) E ′(D1) = 0.503., (c) Periodic CGSSN (n = 4 and b = 12).
E ′(D1) = 0.026, (d) Chaotic Rossler Simulation x(t), (e) Chaotic OPN (n = 7). E ′(D1) = 0.893,
(f) Chaotic CGSSN (n = 4 and b = 12). E ′(D1) = 0.905.

The resulting OPN and CGSSN from the Rossler system simulations of periodic and chaotic
dynamics both capture the increasing complexity of the signal with the dynamic state change. For
the periodic signal, the OPN show overarching large loops relating to the periodic nature of the
SSR. However, the CGSSN better captures the periodic nature of the trajectory with only a single
loop forming. This characteristic of the CGSSN is due to periodic flows never intersecting in
the SSR if the signal is sampled at a high enough frequency, there is no or little additive noise,
and an appropriately sized delay and dimension are selected. While correctly choosing the delay
and dimension is not a trivial task, there is a broad literature on their selection for the SSR task.
This work relies on the multi-scale permutation entropy method for selecting the delay and the
false-nearest-neighbors algorithm [126] for selecting an appropriate SSR dimension. However, we
found that increasing the dimension one higher than that suggested using false-nearest-neighbors
more reliably formed a single loop structure in the CGSSN. Additionally, in Appendix 2.1.6 we
demonstrate that for 23 dynamical systems, setting b ≥ 12 resulted in only a single loop structure
for periodic signals while minimizing the computational demand when using the CGSSN. As such,
we set b = 12 unless otherwise stated.

For the chaotic x(t), the OPN and CGSSN both summarize the topology of the attractor with
both networks having a high degree of entanglement with nodes being highly intertwined. This is a
typical characteristic of complex transitional networks formed from chaotic signals. Furthermore,

36

it should be noted that the CGSSN tends to be more entangled than its OPN counterpart, suggesting
that the CGSSN better captures the increase in complexity of the chaotic signal.

To quantify how well the OPN and CGSSN capture the complexity of the signals, we rely on
persistent entropy [132], which was previously adapted [55] to study the resulting persistence dia-
gram using the unweighted shortest path distance of complex networks. The normalized persistent
entropy [133, 134] is defined as

E ′(D) =
−∑x∈D

pers(x)
L (D) log2

(
(x)

L (D)

)
log2 (L (D))

, (2.8)

where L (D) =∑x∈D pers(x) with pers(x) = |b−d| as the lifetime or persistence of point x = (b,d)
in a persistence diagram D. For studying the complexity of transitional network we apply this score
to the one-dimensional persistent diagram D1, which measures the loop structures in the network.
This score yields a value close to zero for networks with a single loop structure corresponding to
periodic dynamics and a value close to one for chaotic dynamics with highly intertwined networks.
For our example OPN and CGSSNs in Fig. 2.7 we get normalized persistent entropy scores of
0.503 and 0.893 for periodic and chaotic OPNs, respectively, and 0.026 and 0.905 for CGSSNs.
These statistics show that the CGSSN outperforms the OPN with a significantly larger difference
in the entropy values. This is mainly due to the CGSSN having a score near zero for periodic
dynamics due to its general loop structure compared to the periodic OPN having several loops.
This result comparing the OPN and CGSSN suggests that the CGSSN will outperform the OPN
for the dynamic state detection task. With this single case under our belt, we turn our attention to
an empirical study of this characteristic over more dynamical systems.

2.1.4.2 Empirical Testing of Dynamic State Detection for 23 Continuous Dynamical Systems
The previous example in Section 2.1.4.1 showed the improved dynamic state detection perfor-

mance of the CGSSN over the OPN for a single example (Rössler System). However, we want to
show that this improvement is present over various systems. To do this, we use 23 continuous dy-
namical systems listed in the Appendix 2.1.7 with details on the simulation method—each system
was simulated for both periodic and chaotic dynamics.

For each periodic and chaotic signal, we calculate the resulting persistence diagram of the OPN
and CGSSN using each of the distance methods (unweighted shortest path, shortest weighted path,
weighted shortest path, and diffusion distance). We then compare the collection of persistence
diagrams for a specific network type (OPN or CGSSN) and distance measure by calculating the
bottleneck distance matrix between each persistence diagram. The bottleneck distance dBN(D,F)
is a similarity measure between two persistence diagrams (D and F). It is calculated as the sup
norm distance between the persistence diagrams, where the persistence diagrams are optimally
matched with the distance between matched persistence points being at most dBN . The bottleneck
distance matrix DBN is calculated by finding dBN between all persistence diagrams.

The question we are trying to answer is if periodic and chaotic dynamics result in similar
persistence diagrams across multiple systems. To answer this, we first use a lower-dimensional
projection of DBN by implementing the Multi-Dimensional Scaling (MDS) projection to two di-
mensions. To measure how well the dynamics delineate on the MDS projection, we use a Support
Vector Machine (SVM) with a Radial Basis Function (RBF). Note that because the MDS does
not allow for the mapping of previously unseen points, we cannot use this procedure for a proper

37

Diffusion distance of OPN Diffusion distance of CGSSN

Figure 2.8 Two-dimensional MDS projection of the bottleneck distances between persistence
diagrams of the chaotic and periodic dynamics with an SVM radial bias function kernel
separation. This separation analysis was repeated for the OPNs and CGSSNs using the diffusion
distance.

classification test as we cannot approximate training error. However, we can use this procedure to
see if the the persistence diagrams of different classes are separated with respect to the bottleneck
distance.

We fit the SVM using the default SKLearn SVM parameters package. The resulting separa-
tions for periodic and chaotic dynamics using the OPN (left) and CGSSN (right) are shown in
Appendix 2.1.8. These separations are for the diffusion distance calculation as it provided the best
results for both the OPN and CGSSN. However, we also include similar figures for other choices
of distances in Appendix 2.1.8.

Figure 2.8 demonstrates the significant improvement in dynamic state detection of the CGSSN
over the OPN. This is shown with the periodic and chaotic networks being clustered for the CGSSN
(right of Fig. 2.8) with no overlap compared to the OPN (left of Fig. 2.8) having some overlap be-
tween periodic and chaotic dynamics. This is further shown with the SVM kernel being able to
separate the periodic and chaotic regions for the CGSSN easily. To better compare all distance
measures and complex network combinations, we quantify the performance of each SVM kernel
using the accuracy of the separation. We repeated this accuracy calculation 100 times for each
combination using 100 random seeds to generate the SVM kernels. The resulting average accura-
cies with standard deviation uncertainties are reported in Table 2.1.

Based on the results in Table 2.1, the CGSSN outperforms the OPN for all distance measures.
Additionally, we found 100% separation accuracy for both the shortest weighted path and diffusion
distances when combined with the CGSSN. We believe this performance improvement is due to
the coarse-graining procedure capturing the SSR vector’s amplitude information which is discarded
when identifying permutations in the OPN.

2.1.4.3 n-Periodic Systems
Based on the state space embedding structure of a system, one may expect that for a 2 or

3-periodic system that the CGSSN may result in 2 and 3 loops respectively, but this is not the

38

Table 2.1 Accuracies for SVM seperation of MDS projections for dynamic state detection.
Uncertainties are recorded as one standard deviation for random seeds 1–100.

Network Distance Average Separation Accuracy Uncertainty
OPN Shortest Unweighted Path Distance 80.7% 1.5%
OPN Shortest Weighted Path Distance 88.9% 0.0%
OPN Weighted Shortest Path Distance 88.9% 0.0%
OPN Lazy Diffusion Distance 95.0% 0.9%

CGSSN Shortest Unweighted Path Distance 98.1% 0.9%
CGSSN Shortest Weighted Path Distance 100.0% 0.0%
CGSSN Weighted Shortest Path Distance 98.1% 0.9%
CGSSN Lazy Diffusion Distance 100.0% 0.0%

Figure 2.9 CGSSN results for four multi-periodic cases of the Lorenz system. The sequence of
A’s and B’s below each image indicates the oribital sequence around the attractors A and B in the
system. (a) AB ρ = 350, (b) AAB ρ = 100.5, (c) AABB ρ = 160, (d) ABBABB ρ = 99.65. As
expected, all four cases result in a single loop CGSSN. These networks were generated using
n = 4 and b = 12.

case. In general, for an n-periodic system, we expect the CGSSN to contain only a single loop,
and so we caution the user that this method will likely not be able to differentiate differences in
the periodicity. We demonstrate this nuance by showing CGSSN results on the Lorenz system for
multi-periodic responses. Fig. 2.9 shows the corresponding CGSSNs for the Lorenz system varying
the ρ parameter to obtain multi-periodic responses. The networks are labeled with a sequence of
A’s and B’s where each letter corresponds to a loop in the trajectory around one of the attractors.
For example AAB trajectory would be two loops around A and one around B before repeating the
cycle. For all four cases shown, a single loop is obtained in the CGSSN even though the system
exhibits multi-periodicity.

2.1.4.4 A Remark on Discrete Maps
As we demonstrated in Section. 2.1.4.2, the CGSSN method allows for efficient and accurate

dynamic state detection over a range of continuous dynamical systems. Discrete maps are another

39

Figure 2.10 CGSSN results for the periodic (top row) and chaotic (bottom row) logistic map using
the unweighted shortest path. The system responses are shown on the left along with the
permutation sequence. The network representations are in the middle with the persistence
diagrams on the right. Both networks exhibit the same persistence diagram due to the limited
possible system states for the periodic case.

subset of dynamical systems where it would be useful to apply these tools; however, care must be
taken for this type of system to ensure that the CGSSN is a suitable approach. This is because in
discrete systems, there are typically far fewer states that the system can exhibit so in some cases
the CGSSN may not contain any loops, but the response is still periodic leading to an incorrect
classification in the model. To demonstrate, we show the CGSSNs for the periodic and chaotic
logistic map in Fig. 2.10 where the unweighted shortest path distance was used to compute per-
sistence. We see that the CGSSNs show vastly different structures where the periodic network
contains a single loop and the chaotic network is tangled. However, the persistence diagrams for
these networks appear to be equivalent because the networks were unweighted and all of the loops
in the chaotic network are exactly the same size as the periodic case. Due to only having 4 possible
states in the periodic logistic map here, the network loop does not provide enough of a difference
to automatically classify it as either dynamic state. We note that the chaotic persistence diagram
contains more loops than the periodic case here, but all are the same persistence lifetime. In the
case of a continuous system where many more states are possible, these loops will be larger in size
and the persistence diagram will reflect those differences allowing for classification of the dynamic
state. In this case, when other distances are used such as the shortest weighted path, the resulting
persistence diagrams have the forms that we expect for periodic and chaotic behaviors due to the
weighting of the edges influencing the persistence lifetime of that loop.

In the case where the system being studied can exhibit many possible states in its periodic
response, a single loop will form the CGSSN and the persistence diagram will show a persistence
pair with a long lifetime. For example, we demonstrate this behavior on the 3 periodic linear
congruential generator map in Fig. 2.11. The results in Figs. 2.10 and 2.11 demonstrate that this
method should be used with caution on discrete systems and for systems with enough states that

40

Figure 2.11 CGSSN results for the periodic (top row) and chaotic (bottom row) linear
congruential generator map using the unweighted shortest path. The system responses are shown
on the left along with the permutation sequence. The network representations are in the middle
with the persistence diagrams on the right. Both networks exhibit the distinct persistence diagram
structures due to the larger loop in the periodic network.

approach the behavior of a continuous system, the CGSSN persistence diagrams can provide a
correct dynamic state detection.

2.1.4.5 Noise Sensitivity
One issue with ordinal partition networks is they are not exceptionally resilient to noise. Indeed,

one can think of the ordinal partition network as being the 1-skeleton of the nerve of a particular
closed cover of the state space, delineated by the hyperplanes xi ≤ x j. Consequently, when noise
is injected into the system, there are superfluous transitions when nearing one of these boundaries.
For example, consider the signal and its embedding into R3 in Fig. 2.12.

This effect becomes even more prominent near an intersection of multiple hyperplanes. As
the distance to the hyperdiagonal dH becomes small, we see a significant increase in seemingly
superfluous transitions between permutations π (highlighted in orange in Fig. 2.12). This issue is
even more exaggerated when the embedded signal is consistently close to the hyperdiagonal, which
results in network representations whose shape carries no information on the underlying dynamical
system (e.g., see the signal and far-right OPN in Fig. 2.13). This is particularly detrimental when
we attempt to include the weighting information, as the flips can skew the count for the number of
times a boundary is crossed.

Certain network representations of time series are naturally more noise-robust than others.
For example, Fig. 2.13 shows the OPN and CGSSN for the signal with and without noise. This
example demonstrates that the CGSSN is the best choice for this signal with only minor changes
in its shape, while the OPN loses all resemblance to the noise-free network.

Outside of this sensitivity to the hyperdiagonal, we also found that the CGSSN is more noise
robust than the OPN for other signals. For example, in Fig. 2.14 we show the normalized persistent

41

Figure 2.12 The three-dimensional state space reconstruction (d) from the signal x(t) with and
without additive noise (a) shows as the distance to the hyperdiagonal dH (c) becomes small,
undesired permutation transitions (b)—with zoomed-in section shown in (e)—occur as shown in
the orange highlighted regions.

Figure 2.13 Example demonstrating the importance of choosing an appropriate network
formation method when there is additive noise in the signal. The CGSSN retains the graph
structure even with additive noise; in contrast, the OPN network loses all resemblance to the
noise-free topological structure even with a small amount of additive noise. x(t) is the signal, N
is additive noise, and G(x) is the graph representation of x.

entropy statistic from Eq. (2.8) calculated for the periodic and chaotic simulations of the Rössler
system defined in Eq. (2.26) when additive noise is present in the signal. We incremented the
additive noise using the Signal-to-Noise Ratio (SNR). The SNR (units of decibels) is defined as
SNR= 20log10(A signal/Atextnoise), where A signal and Atextnoise are the root-mean-square amplitudes
of the signal and additive noise, respectively. This result shows that for this signal the OPN network
is only robust down to an SNR of approximately 32 dB of additive Gaussian noise, while the
CGSSN is able to separate periodic from chaotic dynamics down to approximately 23 dB. We
found similar results for the other 22 dynamical systems investigated in this work.

2.1.4.6 Experimental Results
To validate these tools, we apply them to experimental data collected from a base excited

magnetic pendulum [94]. This system was shown to exhibit periodic and chaotic behavior under
different parameters and the CGSSN persistence diagrams were generated for each case using all

42

OPN CGSSN

Figure 2.14 Noise robustness analysis of dynamic state detection using the summary statistic
persistent entropy (see Eq. (2.8)) for OPN and CGSSN with increasing SNR on a periodic Rossler
simulation from Eq. (2.26).

4 distance measures presented in this paper. Figure 2.15 shows the corresponding time series,
permutation sequence, CGSSN, and persistence diagrams for the periodic response. We see that
for all of the distance metrics, there is a clear singular cycle that forms with a significant persistence
lifetime. Conversely, the same results are presented for the chaotic response in Fig. 2.16 where we
see a drastically different distribution of persistence pairs corresponding to the high number of
cycles present in the chaotic CGSSN. The results presented here are in agreement with our work
in [94].

Figure 2.15 CGSSN results for the forced single magnetic pendulum under conditions that yield a
periodic response. The top left images show the time series and permutation sequence and the top
right shows the coarse grained state space network. The bottom row shows the corresponding
persistence diagrams for the network under the distance metric in the title of each diagram.

2.1.5 Conclusion
In this work, we developed a novel framework for studying CGSSNs using persistent homol-

ogy. We showed that the CGSSN outperformed the standard ordinal partition network in both noise
robustness and dynamic state detection performance, with the CGSSN reaching 100% separation

43

Figure 2.16 CGSSN results for the forced single magnetic pendulum under conditions that yield a
chaotic response. The top left images show the time series and permutation sequence and the top
right shows the coarse grained state space network. The bottom row shows the corresponding
persistence diagrams for the network under the distance metric in the title of each diagram.

accuracy for dynamic state detection for 23 continuous dynamical systems. This is in comparison
to the OPN, which could at most reach 95% accuracy. This approach was validated using data from
a magnetic pendulum experiment to show that the topological structure for periodic and chaotic
timseries are captured in the resulting persistence diagrams.

In this work, we only investigated the most straightforward construction of the CGSSN. Namely,
the equal-sized hyper-cube tessellation cover of the SSR domain. Possible improvements to the
CGSSN could be through a data-dependent adaptive cover algorithm. We also suspect that other
choices of distances could provide improvements for the given pipeline.

Another future direction would be to prove a stability theorem for the CGSSN. That is, can we
show that for a noisy version of a signal, the resulting CGSSN, and subsequently the computed
persistence diagram, is similar to the ground truth. It would also be interesting to study how the
CGSSN could serve to detect quasiperiodicity. We believe that the torus shape associated to the
SSR of quasiperiodic signals could be captured using the CGSSN as it accounts for the signal
amplitude.

2.1.6 Appendix — Coarse Graining Size Analysis
To determine the optimal binning size we we investigate how the structure of the resulting

CGSSN changes as more states are used with b increasing. We considered b ∈ [2,20] as more than
20 bins per dimension becomes computationally expensive without increasing the performance
(see Fig. 2.17). To summarize the shape of the network we use the maximum lifetime of one-
dimensional features (loops) as max(L1) and the normalized persistence entropy E ′(D1) defined in
Eq. (2.8) using the shortest unweighted path distance. The goal is to find a fine enough granularity
(large enough b) that a periodic, noise-free signal will create a signal loop structure in the CGSSN.
This loop structure should result with a persistent entropy of approximately zero. The idea behind
this is based on a periodic attractor’s SSR never intersecting if a suitably high dimension is selected.

44

Figure 2.17 Normalized persistent entropy E ′(D1), the maximum lifetime max(L1), and
computation time t comp for the CGSSN formed with dimension n = 4 and b ∈ [2,20] for the
Rossler system in Eq. (2.26) with example CGSSNs shown at b = 10 and b = 12.

We point the reader to our work in [125] for a comprehensive analysis to choosing a suitable
embedding dimension for the problem. It was found that dimensions of n = 4 or 5 are suitable for
most continuous systems. For the 23 dynamical systems selected a dimension n = 4 is greater than
the dimension of the attractor and will be used unless otherwise stated. Let us first investigate a
suitable number of bins b for the Rossler system defined in Eq. (2.26) with the E ′(D1), max(L1),
and computation time tcomp calculated as b is increased from 2 to 20 shown in Fig. 2.17. This result
show a sudden drop in E ′(D1) and increase in max(L1) from going from 10 to 11 bins. This is due
the the granularity of the coarse-graining procedure being fine enough that the hypercubes do not
capture multiple segments of the periodic flow. This is shown with the two CGSSNs at b = 10 and
b = 12 where at b = 10 we have multiple intersections of the network while at b = 12 there are no
intersections and we only have a single loop structure. Another characteristic is the exponentially
increasing computation time tcomp as b increases. As such, we want to optimize the choice of b to
capture the necessary complexity of the attractor while also minimizing the computation time. For
this example a suitable b = 12 would be the best choice.

The next question we want to ask is if b = 12 is a good option for other dynamical systems. To
test this we again calculate the E ′(D1) and max(L1) for b ∈ [2,20] for the 23 dynamical systems
listed in Table 2.2. Figure 2.18 shows these statistics for all of the dynamical systems and it
demonstrates that a choice of b ∈ [11,13] does work well for all of the dynamical systems with a
drop in E ′(D1). Based on this seemingly universal choice of b in this work we use b = 12 unless
otherwise stated.

2.1.7 Appendix — Data
In this work we heavily rely on a 23 dynamical systems commonly used in dynamical systems

analysis. All of these systems are continuous flow opposed to maps. The 23 systems are listed in

45

Figure 2.18 Binning size analysis using the normalized persistent entropy E ′(D1) and maximum
lifetime max(L1) for 23 dynamical systems listed in Table 2.2 with b ∈ [2,20].

Table 2.2 Continuous dynamical systems used in this work.

Autonomous Flows Driven Dissiptive Flows
Lorenz Driven Van der Pol Oscillator
Rossler Shaw Van der Pol Oscillator
Double Pendulum Forced Brusselator
Diffusionless Lorenz Attractor Ueda Oscillator
Complex Butterfly Duffing Van der Pol Oscillator
Chen’s System Base Excited Magnetic Pendulum
ACT Attractor
Rabinovich Frabrikant Attractor
Linear Feedback Rigid Body Motion System
Moore Spiegel Oscillator
Thomas Cyclically Symmetric Attractor
Halvorsen’s Cyclically Symmetric Attractor
Burke Shaw Attractor
Rucklidge Attractor
WINDMI
Simplest Cubic Chaotic Flow

Table 2.2. The equations of motion for each systems can be found in the python topological signal
processing package Teaspoon under the module MakeData https://lizliz.github.io/teaspoon/.
Specifically, these systems are described in the dynamical systems function of the make data mod-
ule [135].

Each system was solved to have a time delay τ = 50, which was estimated from the multiscale
permutation entropy method [125]. The signals were simulated for 750τ/ fs seconds with only
the last fifth of the signal used to avoid transients. It should be noted that we did not need to
normalize the amplitude of the signal since the ordinal partition network is not dependent on the
signal amplitude.

46

2.1.8 Additional Results
Here we provide the additional SVM projections to visualize the dynamic state detection per-

formance of the shortest path distances: unweighted shortest path, shortest weighted path, and
weighted shortest path. Table 2.1 provides the corresponding average accuracies.

(a) (b) (c)

(d) (e) (f)

Figure 2.19 Two dimensional MDS projection of the bottleneck distances between persistence
diagrams of the chaotic and periodic dynamics with an SVM radial bias function kernel
separation. This separation analysis was repeated for the OPNs and CGSSNs using the
unweighted shortest path, shortest weighted path, and weighted shortest path distances. (a)
Unweighted shortest path distance of OPN, (b) Shortest weighted path distance of OPN, (c)
Weighted shortest path distance of OPN, (d) Unweighted shortest path distance of CGSSN, (e)
Shortest weighted path distance of CGSSN, (f) Weighted shortest path distance of CGSSN.

2.2 Timeseries Embedding Delay Estimation with TDA
Permutation Entropy (PE) is a powerful tool for quantifying the complexity of a signal which

includes measuring the regularity of a time series. Additionally, outside of entropy and informa-
tion theory, permutations have recently been leveraged as a graph representation, which opens the
door for graph theory tools and analysis. Despite the successful application of permutations in a
variety of scientific domains, permutations requires a judicious choice of the delay parameter τ

and dimension n. However, n is typically selected within an accepted range giving optimal results
for the majority of systems. Therefore, in this work we focus on choosing the delay parameter,

47

while giving some general guidance on the appropriate selection of n based on a statistical analysis
of the permutation distribution. Selecting τ is often accomplished using trial and error guided by
the expertise of domain scientists. However, in this paper, we show how persistent homology, a
commonly used tool from Topological Data Analysis (TDA), provides methods for the automatic
selection of τ . We evaluate the successful identification of a suitable τ from our TDA-based ap-
proach by comparing our results to both expert suggested parameters from published literature and
optimized parameters (if possible) for a wide variety of dynamical systems.

Shannon entropy, which was introduced in 1948 [136], is a summary statistic measuring the
regularity of a dataset. Since then, several new forms of entropy have been popularized for time
series analysis. Some examples include approximate entropy [137], sample entropy [138], and
permutation entropy (PE) [139]. While all of these methods measure the regularity of a sequence,
PE does this through the motifs or permutations found within the signal. This allows for PE to be
related to predictability [140, 141], which is useful for detecting dynamic state changes. Similar
to Shannon Entropy, PE [139] is quantified as the summation of the probabilities of a data type
(see Eq. (2.9)), where the data types for PE are permutations (see Fig. 2.20), which we represent
as π . Permutations have recently been used in other applications such as ordinal partition net-
works [55, 116] and the conditional entropy of these networks [142]. The permutation parameters
n and τ represent the permutation size and spacing, respectively. More specifically, τ is the em-
bedding delay lag applied to the series and n is a natural number that describes the dimension of
the permutation. In this study we focus on selecting τ using methods based in Topological Data
Analysis (TDA) since the dimension is typically chosen in the range 3 < n ≤ 7 for most applica-
tions [143]. However, we still provide a novel and simple guidance on the automatic selection of n
based on a statistical analysis of the permutations.

Currently, the most common method for selecting PE parameters is to adopt the values sug-
gested by domain scientists. For example, Li et al. [144] suggest using τ = 3 and n = 3 for
electroencephalographic (EEG) data, Zhang and Liu [145] suggest τ = 3 or 5 and n ∈ [3,5] for
logistic maps, and Frank et al. [86] suggest τ = 2 or 3 and n ∈ [3,7] for heart rate applications. One
main disadvantage of using suggested parameter values for an application is the high dependence
of PE on the sampling frequency. As an example, Popov et al. [146] showed the importance of
considering the sampling frequency when selecting τ for an EEG signal. Another limitation is the
need for application expertise in order to determine the needed parameters. This can hinder using
PE in new applications that have not been sufficiently explored. Consequently, there is a need for
an automatic, application-independent parameter selection algorithm for PE.

Several methods have been developed for estimating τ for phase space reconstruction via Tak-
ens embedding [147]. Some of which include mutual information [148], autocorrelation [149],
and phase space methods [150]. There has also been recent work in determining if these methods
are suitable for the delay parameter selection for permutations [125]. Outside of this, a general
framework for selecting both n and τ was introduced in [143]. In this manuscript our goal is to
determine other, TDA-based methods for selecting τ for PE and to draw a connection between per-
mutations and state space reconstruction. Specifically, in Section 2.2.3.2, we relate permutations
to state space reconstruction to provide a justification for using the lag parameter from the latter to
select τ for the former. We then present a novel TDA-based tool for finding τ . For our approach
we compute the 0-D sublevel set persistence in both time and frequency domains to obtain approx-
imations of the maximum significant frequency. We then utilize Nyquist’s sampling theorem to
find an appropriate τ value.

48

To determine the viability of our methods, PE parameters are generated and compared to expert
suggested values, optimal parameters based on maximizing the difference between permutation
entropy for periodic and chaotic signals, and the delay corresponding to the first minima of mutual
information. The method of mutual information was chosen as a basis for comparison based on its
accuracy in selecting τ for PE as demonstrated in [125].

2.2.1 Permutation Entropy Example
Permutation entropy H(n) for permutation dimension n is calculated according to [139] as

H(n) =−∑ p(πi) log p(πi), (2.9)

where p(πi) is the probability of a permutation πi, and H(n) has units of bits when the logarithm
is of base 2. The permutation entropy parameters τ and n are used when selecting the permutation
size: τ is the number of time steps between two consecutive points in a uniformly sub-sampled
time series, and n is the permutation length or motif dimension. Using a real-valued data set X and
a measurement of the set xi ∈ X , we can define the vector vi = [xi,xi+τ ,xi+2τ , . . . ,xi+(n−1)τ], which
has the permutation πi. To better understand the possible permutations, consider an example with
third degree (n = 3) permutations. This results in six possible motifs as shown in Fig. 2.20.

(0,1,2) (0,2,1) (1,0,2)

(2,0,1) (1,2,0) (2,1,0)

Figure 2.20 All possible permutation configurations (motifs) for n = 3, where
[π1 . . .π6] = [(0,1,2) . . .(2,1,0)].

Next, to further demonstrate PE with an example, consider the sequence X = [4,7,9,10,6,11,3]
with third order permutations n = 3 and time delay τ = 1. The sequence can be broken down into
the following permutations: two (0,1,2) permutations, one (1,0,2) permutation, and two (1,2,0)
permutations for a total of 5 permutations. Applying Eq. (2.9) yields

H(3) =−2
5

log
2
5
− 2

5
log

2
5
− 1

5
log

1
5
= 1.522 bits.

The permutation distribution can be visually understood by illustrating the probabilities of each
permutation as separate bins. To accomplish this, Fig. 2.21 was created by taking the same series
X (Fig. 2.21a) and placing the abundance of each permutation into its respective bin (Fig. 2.21b).
PE is at a maximum when all n! possible permutations are evenly distributed or, equivalently,
when the permutations are equiprobable with p(πi) = p(π1), p(π2), . . . , p(πn!) =

1
n! . From this, the

maximum permutation entropy Hmax is quantified as

Hmax(n) =−∑ p(πi) log p(πi)

=− log
1
n!

= logn!.
(2.10)

49

Figure 2.21 Abundance of each permutation from example data set X .

Applying Eq. (2.10) for n = 3 yields a maximum PE of approximately 2.585 bits. Using the
maximum possible entropy log2 n!, the normalized permutation entropy is calculated as

hn =− 1
log2 n! ∑ p(πi) log2 p(πi). (2.11)

Applying Eq. (2.11) to the example series X results in h3 ≈ 0.5888.

2.2.2 An overview of tools from TDA
Our TDA-based approaches for finding the delay dimension employs two types of persistence

applied to two different types of data. Specifically, in our approach we combine the 0-D sublevel
persistence of one-dimensional time series with the z-score. This section provides a basic back-
ground of the topics needed to intuitively understand the subsequent analysis. More specifics can
be found in [13–15, 17].

2.2.2.1 Simplicial complexes
An abstract k-simplex σ is defined as a set of k+ 1 indices where dim(σ) = k. If we apply a

geometric interpretation to a k-simplex, we can think of it as a set V of k+1 vertices. Using this
interpretation, a 0-simplex is a point, a 1-simplex is an edge, a 2-simplex is a triangle, and higher
dimensional versions can be similarly obtained.

A simplicial complex K is a set of simplices σ ⊆V such that for every σ ∈K, all the faces of σ ,
i.e., all the lower dimensional component simplices σ ′ ⊂ σ are also in K. For example, if a triangle
(2-simplex) is in a simplicial complex K, then so are the edges of the triangle (1-simplices) as well
as all the nodes in the triangle (0-simplices). The dimension of the resulting simplicial complex
is given by the largest dimension of its simplices according to dim(K) = maxσ∈K dim(σ). The
n-skeleton of a simplicial complex K(n) is the restriction of the latter to its simplices of degree at
most n, i.e., K(n) = {σ ∈ K | dim(σ)≤ n}.

Given an undirected graph G = (V,E) where V are the vertices and E are the edges, we can
construct the clique (or flag) complex

K(G) = {σ ⊆V | uv ∈ E for all u ̸= v ∈ σ}.

50

2.2.2.2 Homology
If we fix a simplicial complex K, then homology groups can be used to quantify the 1-dimensional

topological features of the structure in different dimensions. For example, in dimension 0, the rank
of the 0 dimensional homology group H0(K) is the number of connected components. The rank of
the 1-dimensional homology group H1(K) is the number of loops, while the rank of H2(K) is the
number of voids, and so on. The homology groups are constructed using linear transformations
termed boundary operators.

To describe the boundary operators, we let {ασ} be coefficients in a field F (in this paper we
choose F = Z2). Since we are using the field Z2 we do not need to consider the orientation of the
simplicial complex. Then K(n), the n-skeleton of K, can be used as a generating set of the F-vector
space ∆n(K). In this representation, any element of ∆n(K) can be written as a finite formal sum

∑

σ∈K(n)
ασ σ called an n-chain. Further, elements in ∆n(K) are added by adding their coefficients.

The group of all n-chains is the nth chain group ∆n(K), which is a vector space. Given a simplicial
complex K, the boundary map ∂n : ∆n(K)→ ∆n−1(K) is defined by

∂n([v0, . . . ,vn]) =
n

∑
i=0

(−1)i[v0, . . . , v̂i, . . . ,vn],

where v̂i denotes the absence of element vi from the set. This linear transformation maps any
n-simplex to the sum of its codimension 1 (codim-1) faces. The geometric interpretation of the
boundary operator is that it yields the orientation-preserved boundary of a chain.

By combining boundary operators, we obtain the chain complex

. . .
∂n+1−−→ ∆n(K)

∂n−→ . . .
∂1−→ ∆1(K)

∂0−→ 0,

where the composition of any two subsequent boundary operators is zero, i.e., ∂n ◦ ∂n+1 = 0. An
n-chain α ∈ ∆n(K) is a cycle if ∂n(α) = 0; it is a boundary if there is an n+ 1-chain β such that
∂n+1(β) = α . Define the kernel of the boundary map ∂n using Zn(K) = {c ∈ ∆n(K) : ∂nc = 0},
and the image of ∂n+1 Bn(K) = {c ∈ ∆n(K) : c = ∂n+1c′,c′ ∈ ∆n+1(K)}. Consequently, we have
Bk(K)⊆ Zk(K). Therefore, we define the nth homology group of K as the quotient group Hn(K) =
Zn(K)/Bn(K). In this paper, we only need 0-dimensional persistent homology, and we always
assume homology with Z2 coefficients which removes the need to keep track of orientation. In the
case of 0-dimensional homology, there is a unique class in H0(K) for each connected component
of K. For 1-dimensional homology, there is one homology class in H1(K) for each hole in the
complex and so on for higher dimensional invariants.

2.2.2.3 Filtration of a simplicial complex
Now, we are interested in studying the structure of a changing simplicial complex. We intro-

duce a real-valued filtration function on the simplicies of K such that f (τ) ≤ f (σ) for all τ ≤ σ

simplices in K. If we let {y1 < y2 < .. . < yℓ} be the set of the sorted range of f for any y ∈R, then
the filtration of K with respect to f is the ordered sequences of its subcomplexes

/0 ⊆ K(y1)⊆ K(y2)⊆ ·· · ⊆ K(yℓ) = K.

The sublevel set of K corresponding to y is defined as

K(y) = {σ ∈ K | f (σ)≤ y}, (2.12)

51

where each of the resulting K(y) is a simplicial complex, and for any y1 ≤ y2, we have K(y1) ⊆
K(y2).

The filtration of K enables the investigation of the topological space under multiple scales of
the output value of the filtration function f . In this paper we consider a filtration function which
corresponds to 0D sublevel persistence applied to 1-D time series data.

0-D persistence applied to 1-D time series: Let χ be the time-ordered set of the critical values
of a time series. Here, we can think of the simplicial complex K = G(V,E) containing a number
of vertices |V | equal to the number of critical values in the time series and only the edges E
that connect adjacent vertices. i.e., vertices {vi | 1 ≤ i ≤ n}, and edges {vivi+1 | 1 ≤ i ≤ n− 1}.
Therefore, we have a one-to-one correspondence between the critical values in χ and the vertices
of the simplicial complex V . We define the filtration function for every face σ in K according to

f (σi) =

{
χi if σi ∈V,
max(u,v) if σi = uv ∈ E.

Using this filtration function in Eq. (2.12), we can define an ordered sequence of subcomplexes
where y ∈ [min(χ),max(χ)].

2.2.2.4 Persistent homology
Persistent homology is a tool from topological data analysis which can be used to quantify the

shape of data. The main idea behind persistent homology is to watch how the homology changes
over the course of a given filtration.

Fix a dimension n, then for a given filtration

K1 ⊆ K2 ⊆ ·· · ⊆ KN

we have a sequence of maps on the homology

Hn(K1)→ Hn(K2)→ ··· → Hn(KN).

We say that a class [α]∈ Hn(Ki) is born at i if it is not in the image of the map Hn(Ki−1)→ Hn(Ki).
The same class dies at j if [α] ̸= 0 in Hn(K j−1) but [α] = 0 in Hn(K j).

This information can be used to construct a persistence diagram as follows. A class that is
born at i and dies at j is represented by a point in R2 at (i, j). The collection of the points in the
persistence diagram, therefore, give a summary of the topological features that persists over the
defined filtration. See the example of Fig. 2.22 for n = 0 and time series data.

2.2.3 Permutation Delay
To form permutations from a time series a delay embedding is applied to a uniform subsampling

of the original time series according to the embedding parameter τ . For example, the subsampled
sequence X with elements {xi : i∈N∪0} subject to the delay τ is defined as X(τ) = [x0,xτ ,x2τ , . . .].
Riedl et al. [143] showed that PE is sensitive to the time delay, which prompts the need for a
robust method for determining an appropriate value for τ . For estimating the optimal τ , we will
be investigating the following methods in the subsequent sections: Mutual Information (MI) in
Section 2.2.3.1, and combining 0-D persistence with the frequency and time domains (Section

52

Figure 2.22 Example formulation of a persistence diagram based on 0-D sublevel sets.

2.2.3.3). We recognize, but do not investigate, some other commonly used methods for finding τ .
These include the autocorrelation function [149] and the phase space expansion [150].

Before introducing the TDA-based methods, in Section 2.2.3.2 we elucidate a connection be-
tween the permutation delay parameter and the state space reconstruction delay parameter for
Takens’ embedding to justify the use of methods such as MI and the TDA-based methods.

2.2.3.1 Mutual Information
A common method for selecting the delay τ for state space reconstruction is through a measure

of the mutual information between a time series x(t) and its delayed version x(t+τ) [148]. Mutual
information is a measurement of how much information is shared between two sequences, and it
was first realized by Shannon et al. [136] as

I(X ;Y) = ∑
x∈X

∑
y∈Y

p(x,y) log
p(x,y)

p(x)p(y)
, (2.13)

where X and Y are separate sequences, p(x) and p(y) are the probability of the element x and y
separately, and p(x,y) is the joint probability of x and y. Fraser and Swinney [148] showed that for
a chaotic time series the mutual information between the sequence x(t) and x(t + τ) will decrease
as τ increases until reaching a minimum. At this delay τ , the individual data points share minimum
amount of information, thus indicating that the data points are sufficiently separated. While this
delay value was specifically developed for phase space reconstruction from a single time series,
we show in Section 2.2.3.2 how this delay parameter selection method is also appropriate for
permutation entropy. Due to this relationship and the result in [125] suggesting the use of MI
for PE delay selection, we benchmark the delays τ obtained from our methods against their MI
counterparts.

2.2.3.2 Relating Permutations to Delay Reconstruction
The goal in this section is to relate the distribution of permutations formed from a given delay

τ to the state space reconstruction with the same delay τ . This connection will show the time delay
for both permutations and state space reconstruction are related.

Let us first start by describing the process for state space reconstruction and its similarity to
permutations. As described by Takens’ [147], we can reconstruct an attractor that is topologically
equivalent to the original attractor of a dynamical system through embedding a 1-D signal into
Rn by forming a cloud of delayed vectors as vi = [x(ti),x(ti+τ),x(ti+2τ), . . . ,x(ti+(n−1)τ)] for i ∈
[0,L−nτ], where L is the length of the discretely and uniformly sampled signal. Permutations are

53

Figure 2.23 Example formation of a permutation sequence from the time series x(t) = 2sin(t)
with sampling frequency fs = 20 Hz, permutation dimension n = 3 and delay τ = 40. The
corresponding time-delay embedded vectors from x(t) with the permutation binnings (π1, . . . ,π6)
in the state space are shown in the bottom figure.

Figure 2.24 Example comparing first minima of mutual information and first maxima of
multi-scale permutation entropy, which demonstrates the correspondence between the two. On
the left are the n = 3 time delayed state space reconstructions with an inaccurately chosen τ = 1
and appropriate τ = 14. On the right shows the permutation distribution as τ increases and the
associated multi-scale permutation entropy and mutual information plots.

54

formed in a very similar fashion where we take our vectors vi and find their symbolic representation
based on their ordinal ranking as explained in Section 2.2.1. The different permutation types can
be viewed as an inequality-based binning of the Rn vector space of the reconstructed dynamics
as shown in Fig. 2.23 for dimension n = 3. For example, consider the region in Fig. 2.23 labeled
π1. All points on the trajectory shown in this region have the property that x(t + 2τ) > x(t +
τ) > x(t) meaning that points in this region are placed into the group π1 where all nodes in the
permutation are increasing. Similarly, the other sections of the trajectory are appropriately binned
to the remaining permutations. This provides a first intuitive understanding of the connection
between permutation and state space reconstruction; however, we need to determine if the optimal
τ parameter used in vi is related to the optimal delay in PE.

Takens’ embedding theorem explains that, theoretically, any delay τ would be suitable for re-
constructing the original topology of the attractor; however, this has the requirement of unrestricted
signal length with no additive noise in the signal [147]. Since this is rarely a condition found in
real-world signals, a τ is chosen to unfold the attractor such that noise has a minimal effect on the
topology of the reconstructed dynamics.

Let us now explain what we mean by the correspondence between τ and the unfolding of the
dynamics and what effect this has on the corresponding permutations. If the delay τ is too small
(e.g. τ = 1 for a continuous dynamical system with a high sampling rate) the delay embedded
reconstructed attractor will be clustered around the hyper-diagonal in Rn. Additionally, the cor-
responding permutations will be overwhelmingly dominated by the permutation types π1 and πn!
with these two permutations being of the all increasing and all decreasing ordinal patterns, respec-
tively. The dominance of these two permutations for a delay τ that is too small was termed by
Casals et al. [151] as the “redundancy effect." For an example of this see the permutation distri-
bution and clustering about the hyper-diagonal in R3 in Fig. 2.24 when τ = 1. We see that for
τ = 1, the trajectory is dominated by π1 and π6 permutations, and for this case each group makes
up a probability of 50% of the embedded attractor. As the delay increases, the probabilities of
the remaining groups begin to increase and the π1 and π6 probabilities decrease. These probabil-
ities are generally calculated by the computing the fraction of the trajectory that is occupied by
each ordinal pattern. This example is based on the x-solution to the periodic Rossler dynamical
system as described in Section 2.2.7.2. As the delay increases beyond the redundancy effect, the
reconstructed attractor begins to unfold to have a similar shape and topology as the true attrac-
tor. Correspondingly, as the delay increases the permutation distribution tends towards a more
equiprobable distribution (See Fig. 2.24 at τ ≈ 14).

A way of summarizing the permutation probability distribution is actually through PE itself
and more specifically the analysis of Multi-scale Permutation Entropy (MsPE). Riedl et al. [143]
showed how after the redundancy effect there is a suitable delay for PE, which we related to
the first maxima of the MsPE plot [125]. The MsPE plot for our periodic Rossler example is
shown in Fig. 2.24. Let us also look at the MI plot as a comparison. The idea behind MI is
that at the first minima of the mutual information between x(ti) and x(ti+τ) the delay τ accurately
provides a suitable delay for state space reconstruction. A quick investigation of the MI function
reveals a high degree of correlation between the MI function and the MsPE function with the first
maxima of MsPE being approximately at the same τ as the first minima of MI. When the delay
becomes significantly larger than the first minima of MI or maxima of MsPE, the permutation
distribution begins to fluctuate as shown in Fig. 2.24. This effect was termed the “irrelevance
effect" by Casdagli et al. [151]. This increasing of τ beyond the the first minima also correlates

55

with what Kantz and Schreiber [38] describe as the reconstruction filling an overly large space with
the vectors already being independent. Additionally, at a minima beyond the first minima, Fraser
and Swinney [148] showed how the reconstructed attractor shape will no longer qualitatively match
the shape of the true state space.

In summary, we have shown a main heuristic result we need to move forward: tools for delay
parameter selection for PE can be suitable for state space reconstruction and vice-versa. While
we do not provide a proof that PE and state space reconstruction use the same τ , it has recently
been shown that a connection between co-homology, information theory, and probability does ex-
ist [152], which strengthens our qualitative analysis of this connection. In the following sections
we leverage tools from TDA to determine the optimal τ associated with the unfolding of the at-
tractor.

2.2.3.3 Finding τ Using Sublevel Set Persistence
In this section our goal will be to leverage sublevel set persistence for the selection of τ for

both state space reconstruction and permutation entropy. Specifically, our goal is to automate
the frequency analysis method [74] for selecting τ for state space reconstruction by analyzing
both the time and frequency domain of the signal using sublevel set persistence. Melosik and
Marszalek [74] leveraged Shannon-Nyquist sampling criteria and used the maximum significant
frequency fmax and the sampling frequency fs to select an appropriate τ according to

τ =
fs

α fmax
, (2.14)

where α ∈ [2,4]. The value α = 2 is associated to the Nyquist sampling rate, while α > 4 pro-
duces an oversampling. Since this method was developed using the Nyquist sampling rate, it is
applicable for continuous, band-limited signals. This frequency based approach was used to find
suitable delays for the 0/1 test on chaos and heuristically compare the Lorenz attractor and its
time-delay reconstruction [74]. The heuristic comparison showed that this frequency approach
actually provided more accurate delay parameter selections for state space reconstruction than the
mutual information function when trying to replicate the shape of the attractor. Unfortunately, a
major drawback of this method is the non-trivial selection of fmax. In Melosik’s and Marszalek’s
original work [74] the maximum frequency was manually selected using a normalized Fast Fourier
Transform (FFT) cutoff of approximately 0.01, which does not address the possibility of additive
noise.

In [125] the maximum “significant” frequency was approximated in a time series using the FFT
and defining a power spectrum cutoff based on the statistics of additive noise in the FFT. An issue
with this method for non-linear time series is that the Fourier spectrum does not easily yield itself to
selecting the maximum “significant” frequency for chaotic time series even with an appropriately
selected cutoff to ignore additive noise. Additionally, the method was only developed for Gaussian
White Noise (GWN) contamination of the original time series.

The following sections improve the selection of the maximum significant frequency using two
novel methods based on 0-D sublevel set persistence. We chose to use 0-D sublevel set persistence
due to its computational efficiency and stability for true peak selection [153,154]. The first method
is based on a time domain analysis of the sublevel set lifetimes (see Section 2.2.3.4), and the second
implements a frequency domain analysis using sublevel set persistence and the modified z-score
(see Section 2.2.3.5).

56

2.2.3.4 Time Domain Approach
The first approach we implement for estimating the maximum significant frequency of a signal

is based on a time domain analysis of the sublevel set persistence. This process uses the time
ordered lifetimes from the sublevel set persistence diagram. Time ordered lifetimes and a cutoff
separating the sublevel sets associated with noise were previously introduced in [155]. Here we
use those methods and results to find the time tB in which all the significant sublevel sets are born.
Figure 2.25 shows an example time order lifetimes plot where the time between two adjacent
lifetimes is defined as TBi . If we use TBi as an approximation of a period in the time series, then

Figure 2.25 Example demonstrating process from time series x (periodic Rossler system) to
sublevel set persistence diagram to time ordered lifetimes on the bottom left. Additionally, on the
bottom left shows a sample time periodic between sublevel sets as TBi .

we can calculate the associated frequencies as fi = 1/TBi Hz. If we then look at the distribution
of fi, the maximum “significant" frequency can be approximated using the 75% quantile of the
distribution of the frequencies as fmax ≈ Q75(f). This quantile allows for a few outlier frequencies
to occur without having a significant effect on the estimate of the maximum significant frequency.

Applying this method to the periodic Rossler system described in Eq. (2.26) results in τ = 23
with the corresponding state space reconstruction for n = 2 shown in Fig. 2.26. This suggested
delay is larger than that of mutual information (τ = 16), but relatively close. We also see in
Fig. 2.26 that the attractor appears to be circular. Embedding this signal using the suggested delay
from [156] resulted in an attractor that was more elliptical in shape which is not ideal for attractor
reconstruction. This suggests that the time-domain analysis for selecting the maximum frequency
and corresponding delay functions can automatically suggest an appropriate delay for permutation
entropy and state space reconstruction resulting in a more optimal unfolding of the attractor in both
periodic and chaotic cases.

2.2.3.5 Fourier Spectrum Approach
In this section we present a novel TDA based approach for finding the noise floor in the Fourier

spectrum for selecting the maximum significant frequency fmax to be used for selecting τ for
PE through Eq. (2.14). Specifically, we show how the 0-dimensional sublevel set persistence, a
tool from TDA discussed in Section 2.2.2, can be used to find the significant lifetimes and the

57

Figure 2.26 Example demonstrating the time delay τ = 23 result for the periodic and chaotic
Rossler example time series shown in the top figures and the resulting n = 2 Takens’ embeddings.
The bottom right figures show the embeddings using the delays from [156] (τ = 9) and the
sublevel persistence method (τ = 23) for both periodic (left) and chaotic (right) signals.

Times
Series

Fourier
Transform

0-D
Persistence

Modified
-score

Cutoff/
Max. Freq.

Embedding
Delay

Cutoff

Max Frequency

Birth

D
ea

th

Birth

D
ea

th

Frequency Frequency

Figure 2.27 Overview of procedure for finding maximum significant frequency using
0-dimensional sublevel set persistence and the modified z-score for a signal contaminated with
noise.

associated frequencies in the frequency spectrum. Although it would be ideal to separate the
significant lifetimes based on propagating the FFT of a random process into the persistence space,
this task is not trivial. There have been studies on pushing forward probability distributions into the
persistence domain [157–159], but it is difficult to obtain a theoretical cutoff value in persistence
space; therefore, we instead separate the noise lifetimes from significant lifetimes through the
use of the modified z-score. This separation allows us to find the noise floor and the maximum
significant frequency via a cutoff. This process for finding the cutoff and associated maximum
frequency is illustrated in Fig. 2.27. The following paragraphs give an overview of the modified
z-score and cutoff analysis.

Modified z-score The modified z-score zm is essential to understanding the techniques used for
isolating noise from a signal [160]. The standard score, commonly known as the z-score, uses the
mean and the standard deviation of a data set to find an associated z-score for each data point and
is defined as

z =
x−µ

σ
, (2.15)

58

where x is a data point, µ is the mean, and σ is the standard deviation of the data set, respectively.
The z-score value is commonly used to identify outliers in the data set by rejecting points that are
above a set threshold, which is set in terms of how many standard deviations away from the mean
are acceptable. Unfortunately, the z-score is susceptible to outliers itself with both the mean and
the standard deviation not being robust against outliers [161]. This led Hampel [162] to develop
the modified z-score as an outlier detection method that is robust to outliers. The logic behind
the modified z-score or median absolute deviation (MAD) method is grounded on the use of the
median instead of the mean. The MAD is calculated as

MAD = median(|x− x̃|), (2.16)

where x is an array of data points and x̃ is its median. The MAD is substituted for the standard
deviation in Eq. (2.15). To improve the modified z-score, Iglewicz and Hoaglin [163] suggested to
additionally substitute the mean with the median. The resulting equation for the modified z-score
is then

zm = 0.6745
x− x̃
MAD

, (2.17)

where the value 0.6745 was suggested in [163]. We can now use the modified z-score zm for
evaluating the “significance" of each point in the sublevel set persistence diagram of the Fourier
spectrum. A threshold for separating noise in the persistence domain is discussed in the following
paragraph.

Threshold and Cutoff Analysis To determine the noise floor in the normalized Fast Fourier
Transform (FFT) spectrum, we compute the 0-dimensional persistence of the FFT. This provides
relatively short lifetimes for the noise, while the prominent peaks, which represent the actual signal,
have comparatively long lifetimes or high persistence. To separate the noise from the outliers we
calculate the modified z-score for the lifetimes in the persistence diagram. We can then determine
if the lifetime is associated to noise or signal based on a zm cutoff as D, where we can label a
lifetime as significant (an outlier) if zm > D. Iglewicz and Hoaglin [163] suggest a zm threshold of
D = 3.5 based on an analysis of 10,000 random-normal observations. However, we apply both the
FFT and 0-D sublevel set persistence to the original signal so we need to determine if this cutoff
is also suitable for data that has been processed in this way. To do this we used a signal of 10,000
random-normal observations and applied FFT. We then calculated the 0-D sublevel set persistence
and computed the modified z-score zm using the resulting lifetimes. For an accurate cutoff we
would expect to label all of the lifetimes as noise with zm < D since each signal is composed of
pure noise. As shown in Fig. 2.28, a threshold of approximately D= 4.8 labels all of the lifetimes as
noise. This threshold was rounded up to 5 for simplicity. We can now simply define a cutoff based
on the labeling of each lifetime from the modified z-score with Cutoff = max(li f etimenoise). We
emphasize that this threshold is only appropriate for additive Gaussian white noise and a different
cutoff may need to be obtained with a different noise distribution.

We can now find the maximum significant frequency fmax as the highest frequency in the
Fourier spectrum with an amplitude greater than the specified cutoff. For this method to accurately
function, it is required that there is some additive noise in the time series. This is due to the fact
that our pipeline in Fig. 2.27 does not distinguish between signals with and without noise so if
a noise-free signal is used, the outliers will drastically alter the results and the cutoff will not be

59

Figure 2.28 Percent of the persistence points from 0-D sublevel set persistence of the FFT of
GWN using the modified z-score with the provided threshold ranging from 0 to 5.

accurate. Adding noise to the signal is meant to increase the contrast between outliers and the true
signal to allow for a proper cutoff to be obtained. Further, it is uncommon to have a signal without
noise in real world situations. To accommodate this for our simulations, additive Gaussian noise
with Signal-to-Noise Ratio of 30 dB is added to the time series before calculating the FFT. If we
apply this method to the example periodic Rossler system time series we find a suggested delay of
τ = 15. Which is close to the delay estimated using mutual information. W will further investigate
its accuracy on several other systems in Section 2.2.5 to make more general conclusions on the
functionality of this method for selecting τ .

2.2.4 Permutation Dimension
In this section we will show that, contrary to the delay selection, the dimension for permutation

entropy is not related to that of Takens’ embedding. Additionally, we will provide a simple method
for selecting an appropriate permutation dimension based on the permutation distribution.

Permutation entropy is often used to differentiate between the complexity of a time series
when there is a dynamic state change (e.g. periodic compared to chaotic), so the dimension should
be chosen such that it is large enough to capture these changes. To accomplish this we suggest
that permutations of the time series do not occupy all of the possible permutations, but rather
only a fraction of the permutations when an appropriate delay is selected. This criteria is set so
that a change can be captured by an increase/decrease in the number of permutations and their
associated probabilities. Because of this, we suggest a dimension where, at most, only 50% of
the permutations are used. However, it may be more suitable to select a dimension where a lower
percentage is used (e.g. 10%).

To begin this method for determining if the dimension is high enough to capture the time series
complexity we will define Nπ as the number of permutation types where the probability of that
permutation type is significant. Specifically, we will consider the probability of that permutation to
be significant if the number of occurrences of permutation π is greater than 10% of the maximum
number of occurrences of any permutation type of dimension n. The permutation delay τ was
selected from the expert suggested values provided in [125, 143]. We can now express our needed

60

dimension as the ratio and inequality
Nπ

n!
≤ R, (2.18)

where R = 0.50 for the suggested maximum 50% criteria.
To compare this dimension to the standard Takens’ embedding tools for selecting n we will

implement four examples:

x1(t) =
t

10
x2(t) = sin(t)
x3(t) = sin(t)+ sin(πt)

x4(t)∼N (µ = 0,σ2 = 1),

(2.19)

where t ∈ [0,100] with a sampling rate of 20 Hz and N is Gaussian additive noise. By applying
Eq. (2.18) to the time series in Eq. (2.19), we can suggest dimensions of 2 for x1(t), 4 for x2(t), 6
for x3(t), and 7 for x4(t) as shown in Fig. 2.29.

0 20 40 60 80 100
t

0

5

10

x
1(
t)

2 3 4 5 6 7 8 9
100

101

102

103

N
π

2 3 4 5 6 7 8 9
n

0.0
0.2
0.4
0.6
0.8
1.0

N
π
/n

!

x1(t)

x2(t)

x3(t)

x4(t)

0 20 40 60 80 100
t

−1

0

1

x
2(
t)

0 20 40 60 80 100
t

−2

0

2

x
3(
t)

0 20 40 60 80 100
t

−3

0

3

x
4(
t)

Figure 2.29 Percent of permutations used R = Nπ/n! for each example time series (see Eq. (2.19))
as the dimension is incremented.

In comparison to Takens’ embedding, for time series x2(t) dimension n= 2 would be sufficient,
but if this was used for permutation entropy, no increase in complexity could be detected. Addi-
tionally, this result suggests an upper bound on the dimension for permutation entropy as n ≈ 9 as

61

the ratio in Eq. (2.18) is approximately 0 for dimensions n > 9. As a rule of thumb from this result,
a dimension of 8 would be suitable for almost all applications, but it would be optimal to minimize
the dimension to reduce the computation time of PE. In Section 2.2.5 we will show the resulting
suggested dimensions using this method for a wide variety of dynamical systems.

2.2.5 Results
This section provides the results of the parameter selection methods. First, in Section 2.2.5.1,

we calculate the delay parameter for a wide variety of dynamical systems and data sets using
mutual information and the the automatic TDA-based methods described in this manuscript. Un-
fortunately, the optimal parameters cannot be decided based on a simple entropy value comparison
since there is no direct equivalence between PE and other entropy approximations of a signal such
as Kolmogorov-Sinai (KS) entropy with only a bounding between the two as KS ≤ PE [164].
Therefore, to determine the accuracy of the automatically selected PE parameters we implement
two other methods of comparison. The first is a comparison to expert suggested parameters for
a wide variety of systems (see Section 2.2.5.1). The second approach is a comparison to optimal
parameters based on having a significant difference between the PE of two different states for each
system. Of course the second method has the requirement that we have a system model or data
set with two different states for comparison, which is not typically the case, but does allow for an
approximation of optimal PE parameters for these systems. These comparisons are discussed in
Section 2.2.5.1.

The second half of the results, in Sections 2.2.5.5 and 2.2.5.6, is based on analyzing the ro-
bustness of the automatic TDA-based PE parameter selection methods to additive noise and signal
length, respectively.

2.2.5.1 Parameter Value Comparison for Common Dynamical systems
To determine a range of approximately optimal PE parameters we will quantify the difference

between PE values for a wide range of delays and dimensions with the difference for a given τ and
n calculated as

∆hn(τ) = h(Ch.)
n (τ)−h(Pe.)

n (τ), (2.20)

where the superscripts Ch. and Pe. represent the PE calculation on the chaotic and periodic time
series for the given dynamical system. The specific parameters used to generate periodic and
chaotic responses for each system are described in Appendix 2.2.7. If we apply Eq. (2.20) to the
Rossler system for τ ∈ [1,15] and n ∈ [3,10] we find that ∆hn(τ) is significant when τ ∈ [9,15] and
n ∈ [6,10] as shown in Fig. 2.30. However, as mentioned previously in Section 2.2.4, dimensions
greater than 8 can be computationally expensive. We consider this range where ∆hn(τ) is relatively
large as the range of optimal PE parameters to be compared to. We repeated this process for finding
the optimal parameter ranges for PE using a similar procedure to this Rossler example as shown in
Table 2.3.

To verify our TDA-based methods for determining τ , Table 2.3 compares our results to the val-
ues from a wide variety of systems for both the first minima of the mutual information function and
from expert suggestions, including several listed by Riedl et al. [143]. The table also shows the
resulting permutation dimensions suggested from the permutation statistics as described in Sec-
tion 2.2.4 for both R = 0.1 and R = 0.5 from Eq. (2.18). For these systems we have also included,
where applicable, the delay and dimension parameter estimates for both periodic and chaotic re-

62

Delay Dim.
Sublevel
Set Pers. R

Expert Suggested
Parameters

Opt. Param.
RangeCat. system State

t f MI 0.5 0.1 ø n Ref. ø n
Gauss. - 1 1 3 7 8 1 3-6 [143] - -

Uniform - 1 1 3 7 8 - - - - -
Rayleigh - 1 1 2 7 8 - - - - -

Noise
Models

Expon. - 1 1 2 7 8 - - - - -
Per. 11 7 5 5 6

Lorenz
Cha. 11 8 11 5 7

10 5-7 [143] 8-11 5-10

Per. 23 15 16 5 6
Rossler

Cha. 23 15 18 5 6
9 6 [156] 15-23 6-10

Per. 16 9 14 5 6Bi-direct.
Rossler Cha. 16 13 16 5 6

15 6-7 [143] 11-22 6-10

Per. 2 4 4 5 6Mackey
Glass Cha. 9 3 6 5 7

10 4-8 [165] 6-12 4-8

Per. 17 11 14 5 6Chua
Circuit Cha. 17 21 17 5 7

20 5 [166] 16-24 5-10

Per. 4 7 2 4 6Coupled
Ross.-Lor. Cha. 4 5 8 5 7

8 3-10 [124] 4-8 4-9

Per. 67 44 7 4 5

Cont.
Flows

Double
Pendul. Cha. 41 28 47 6 7

- - - 7-47 5-10

Periodic - 13 24 16 4 5 15 4 [156] - -Period.
Funct. Quasi - 25 49 26 6 7 - - - - -

Per. 1 1 3 4 5
Logistic

Cha. 1 1 16 4 6
1-5 4-7 [143] 1-4 3-6

Per. 1 1 3 4 5
Maps

Henon
Cha. 1 1 16 6 7

1-2 2-16 [143] 1-5 5-8

Cont. 22 7 17 5 6
ECG

Arrh. 15 6 15 5 6
10-32 3-7 [85] 6-23 5-7

Cont. 1 3 6 8 8
Med.
Data

EEG
Seiz. 12 4 10 5 7

1-3 3-7 [143] 2-6 4-7

Table 2.3 A comparison between the calculated and suggested values for the delay parameter τ .
The shaded (red) cells highlight the methods that failed to provide a close match to the suggested
delay.

63

Figure 2.30 Example showing difference in PE (see Eq. (2.20)) for periodic and chaotic dynamic
states of the Rossler system for a wide range of PE parameters.

sponses to validate each method’s robustness to chaos and non-linearity. However, for the medical
data section we instead included a healthy/control and unhealthy (arrhythmia for ECG and seizure
for EEG) as a substitute for a periodic and chaotic response, respectively. A detailed description of
each dynamical system or data set used, including parameters for periodic and chaotic responses,
is provided in the Appendix.

In Table 2.3 we have highlighted the methods that failed to provide an accurate delay τ in red.
This does not mean the embedding is not optimal it simply means it fell outside of the range of
expert suggested delays. We will now go through the methods and highlight the advantages and
drawbacks as well as provide general suggestions for which method to use based on the category.

Noise Models: We only have one expert suggestion of parameters for the noise models cate-
gory, which is for Gaussian white noise (Gauss.) as τ = 1 and n ∈ [3,6]. In regards to the delay, all
TDA based methods show an accurate selection of τ = 1, however the suggestion of τ = 3 from
Mutual Information (MI) is slightly higher than suggested. We found that the expert suggested
dimensions of 3 to 6 is significantly lower than the minimum dimension suggested by our permu-
tation statistics method of n = 7. As mentioned in Section 2.2.4, we believe it is necessary to have
the number of permutations used to be at least less than 50% of all the permutations available,
which corresponds to a dimension n = 7 for Gaussian noise. Additionally, as shown in Fig. 2.29,
if a dimension of even n = 6 is used approximately 95% of the permutations are already in use
for Gaussian noise, which would make dynamic state changes difficult or statistically insignificant
if there is a complexity increase. From this logic we can then conclude that a suitable dimension
should actually be at least n = 7 if any increase in the time series complexity is expected. If only
decreases in complexity are expected, then a dimension of n = 6 may be suitable.

Continuous Flows: The next category is of continuous flows described by systems of non-linear
differential equations. As shown in Table 2.3, both the time domain analysis via sublevel set per-

64

sistence and mutual information provide accurate delay suggestions for many of the examples. We
can also conclude that the frequency domain analysis using sublevel set persistence often provided
delays that were too small. In regards to the dimension, the suggested dimensions from the permu-
tation statistics agreed with the delay suggested by experts for all of the continuous flow systems.
This suggests that our method for selecting a dimension for permutation entropy in Section 2.2.4
is accurate for simulations of continuous differential equations.

Periodic Functions: For periodic functions, including a simple sinuisodal function (periodic)
and two incommensurate sinuisoidal functions (quasiperiodic), our results in Table 2.3 show that
all methods, including mutual information, provide accurate selections of τ except the Fourier
spectrum analysis via sublevel sets. This method results in a significantly larger suggestion for τ .
In regards to the dimension selection, our results using the permutation statistics method described
in Section 2.2.4 agree with the expert suggested minimum dimension of n = 4. For the quasiperi-
odic function tested, there is no reference or expert suggested delay; however, a discrepancy was
observed in the obtained time delays where the frequency domain methods yielded a delay of 49
and the time domain and mutual information approaches resulted in delays of about 25. Therefore
the results for the quasiperiodic system are inconclusive.

Maps: When selecting the delay parameter for permutations and takens’ embedding for maps
we found that all of the topological methods suggested accurate delay parameters, while the stan-
dard mutual information method selected overly large delay parameters when the maps are chaotic.
Therefore, we suggest the use of one of the topological methods when estimating the delay pa-
rameter for maps. For the permutation dimension we found a suggested dimension n ∈ [4,7], in
comparison to the expected suggested dimension ranging from 2 to 16. While the range suggested
from the permutations statistics as described in Section 2.2.4 falls within the range suggested by
experts, their range is too broad. Specifically, a dimension greater than 9 can be computationally
cumbersome, and a dimension lower than 4 would not show significant differences for dynamic
state changes. Therefore, we suggest the use of our narrower range of dimension from n ∈ [5,6]
for maps, which agrees with our optimal PE parameter range.

Medical Data: The medical data used in this study inherently has some degree of additive noise,
which provides a first glimpse into the noise robustness of the delay parameter selection methods
investigated. However, a more thorough investigation will be provided in Section 2.2.5.5. From
our analysis, we disagree with the expert suggested delay τ ∈ [1,3], but rather suggest the delay
selected from either mutual information or the time domain analysis of sublevel set persistence.
The general selection for delays between 1 and 3 does not account for the large variation in possible
sampling rates. If a small delay is used in conjunction with a high sampling rate, an inaccurate
delay could be selected resulting in indistinguishable permutation entropy values as the dynamic
state changes. In regards, to the permutation dimension n, we believe that a more appropriate
dimension, in comparison to the values suggested by experts, should range between 5 and 7 for
medical data applications.

2.2.5.2 A Note on Forecasting Performance
In Table 2.3, we show that a significant proportion of the obtained embedding parameters align

with expert suggested values. However, some of the systems resulted in parameters outside of
these suggested ranges. This section aims to demonstrate that using the embedding parameters
from our TDA-based methods can still provide accurate time series forecasting. To perform the

65

forecasting, an AutoRegressive (AR) model was used to learn from simulation data and fit a model
of the form,

xt =
p

∑
i=1

ϕixt−i + εt , (2.21)

where ϕi are learned coefficients from the simulation data, p is the order of the model and εt is
Gaussian white noise [167]. Note also that more sophisticated forecasting models also exist such
as the AutoRegressive Moving Average (ARMA) model [167], but for this analysis we consider
the simplest such case to demonstrate the accuracy of the estimated embedding parameters and
in practice these complex models were found to learn significantly slower compared to the AR
model. We assume that we only have access to one state of the system and embed the signal
using the appropriate delay and dimension. The embedded signal is then regarded as the ground
truth because in practice we do not have access to the remaining states, and Takens’ theorem only
guarantees a topological equivalence in the reconstructed attractor.

We then fit the autoregressive model to the time series choosing a sufficiently large model order
and embed the forecasted signal over a range of delays. These reconstructed attractors are then
compared with the embedded attractor from the simulation using the sum of the Root Mean Square
Errors (RMSE) across all embedded states of the system and plotted with respect to the embedding
delay τ similar to what is done in [38]. If the embedding delay is sufficient for forecasting, we
expect that its error will be reasonably close to the error when using the expert suggested delay.

2.2.5.3 Periodic Bi-Directional Rossler System
Using the sublevel persistence method in the frequency domain, the delay for the periodic bi-

directional Rossler system was computed to be τ = 9 while the expert suggested delay is τ = 15.
This system was simulated using the specifications in Sec. 2.2.7.4 and the AR model was used
to forecast the embedded system states between t = 930 to t = 980. The AR model was trained
on simulation data at an initial condition of x1 = −0.4, y1 = 0.6, z1 = 5.8, x2 = 0.8, y2 = −2.0,
z2 = −4.0, and the model was tested by changing x1 to 1.0 and y1 to 0.4. This process was
performed for τ values between 1 and 25 to generate a RMSE error plot with respect to the system
delay and a dimension of n = 6 was used for embedding. The forecast error for this system is
shown in Fig. 2.31(a) where we see that the error for the two delays of interest are relatively close
with the sublevel persistence method giving an approximately 10% larger forecast error compared
to the expert suggested value. This implies that our method can provide embedding parameters that
give accurate forecasting results for periodic signals. We also see that the forecast error for some
small delays can be low so it is important to emphasize that this plot does not provide a measure
of the optimal delay for attractor reconstruction.

2.2.5.4 Periodic Chua Circuit
The optimal delay using sublevel persistence with the frequency domain method for the peri-

odic chua circuit was determined to be τ = 11 while the expert suggested delay is τ = 20. Autore-
gressive model forecasting was also applied to this system to demonstrate that our methods provide
parameters that result in similar forecasting errors compared to expert suggested parameters. We
trained a 300 term AR model on simulation data as in Sec. 2.2.7.5. The model was used to forecast
the system states between t = 138 to t = 180 with training initial conditions of x = 1.0, y = 0.0,
z = 0.0, and testing initial conditions were set by changing y = 1.0 and z = 1.0. A dimension of

66

n = 7 was used for all simulations of this system and the delay was varied between 1 and 25. The
RMSE errors for this system are shown in Fig. 2.31(b) where we see that for this specific initial
condition, the total error for the expert suggested parameter forecast is nearly identical to the result
from our method, and because both errors are close this gives further evidence that our method is
robust to forecasting.

(a) (b)

Figure 2.31 RMSE forecast error plot for the bi-directional periodic rossler system (a) and
periodic chua circuit (b) with respect to the embedding delay using an AR forecast model with
300 terms to estimate the embedded system states. The emphasized values and ranges in the plot
are from Table 2.3.

2.2.5.5 Robustness to Additive Noise
To determine the noise robustness of the delay parameter selection methods investigated in this

work we will use an example time series. Specifically, we will use the x solution to the periodic
Rossler system as described in Section 2.2.7.2. Note that the simulation parameters for these
results differ from those in [156]. We will use additive Gasussian noise N (µ = 0,σ2), where σ is
determined from the Signal-to-Noise Ratio (SNR). The SNR is a measurement of how much noise
there is in the signal with units of decibels (dB) and is calculated as

SNRdB = 20log10

(
Asignal

Anoise

)
, (2.22)

where Asignal and Anoise are the Root-Mean-Square (RMS) amplitudes of the signal and additive
noise, respectively. If we manipulate Eq. (2.22) we can solve for Anoise as

Anoise = Asignal10−
SNRdB

20 . (2.23)

Because x(t) is a discrete sampling from a continous system with t = [t1, t2, . . . , tN], we calculate
Asignal as

Asignal =

√
1
N

N

∑
i=1

[x(ti)− x̄]2, (2.24)

67

where x̄ is the mean of x and is subtracted from x(t) to center the signal about zero. with Anoise
calculated, we set the additive noise standard deviation as σ = Anoise.

We applied a sweep of the SNR from 1 to 40 in increments of 1 with each SNR being repeated
for 30 unique realizations of the noise distributed as ε ∼ N (0,A2

noise). For each realization of
x(t)+ ε the delay parameters were calculated using all 3 methods: sublevel set persistence of the
frequency domain τSLf , sublevel set persistence of the time domain τSLt , and mutual information
τMI. The mean and standard deviation of the 30 trials at each SNR were calculated for each method
as shown in Fig. 2.32. In Fig. 2.32, it is clear that the methods are robust to noise down to a SNR of

Figure 2.32 Noise robustness analysis of the delay parameter selection using the Rossler system
with incrementing additive noise. The mean and standard deviation as error bars of the delay
parameters from 30 trials at each SNR were calculated using sublevel set persistence of the
frequency domain τSLf , sublevel set persistence of the time domain τSLt , and mutual information
τMI.

approximately 10 dB. While this does show a limit for the sublevel set persistence methods, SNR
values below 10 dB indicate extremely noisy signals.

2.2.5.6 Robustness to Signal Length
A common issue with signal processing and time series analysis methods is their limited func-

tionality with smaller sets of data available, which has been used to analyze the sensitivity of the
delay parameter selection [168]. Here we will investigate the limitations of these methods in the
face of short time series. We will do this analysis by incrementing the length of the time series
with the PE parameters calculated at each increment. For our analysis we will again use the Rossler
system as described in Section 2.2.7.2. Specifically, we increment the length of the signal from
L = 75 to 1000 in steps of 25 (see Fig. 2.33). However, if this type of analysis is not available for
the data set being analyzed, for time series analysis applications it is commonly suggested to have
a data length of L = 4000 for continuous dynamical systems and and L = 500 for maps [169].

In Fig. 2.33 we see that all of the methods reach a larger value of τ , in comparison to the expert
suggested τ = 9 when the time series contains at least 300 data points. However, we see that the
time domain method seems to be more robust to signal length compared to mutual information

68

Figure 2.33 Signal length robustness analysis of the delay parameter selection using the Rossler
system with incrementing signal length from 75 to 1000 in steps of 25. The delay parameters
were calculated at each L using set persistence of the frequency domain τSLf , sublevel set
persistence of the time domain τSLt and mutual information τMI.

and the frequency domain method. An important note to make is that this result is not general for
all continuous dynamical systems. The required length of the signal is going to vary significantly
depending on the sampling rate of the time series. To determine a general requirement for the
methods we repeated this analysis method for all of the systems shown in Table 2.3. Our result
from this analysis found that, in general, a signal of L ≥ 15τ allows selecting an appropriate PE
and state space reconstruction delay τ using the TDA-based methods described in this manuscript.

2.2.6 Conclusion
We described a novel TDA-based approach for automatically determining the PE delay param-

eter τ given a sufficiently sampled/over-sampled time series. We investigated the sublevel set per-
sistence in both the time and frequency domains to determine the maximum significant frequency,
which was then used to estimate an appropriate delay based on the Shannon-Nyquist sampling
criteria [74].

In regards to the permutation dimension n, in Section 2.2.4 we developed a simple statistical
analysis method for selecting an appropriate permutation dimension n based on the need for only
a portion of the permutations to be used in the time series to capture complexity changes. This
method also revealed that the permutation dimension and Takens’ embedding dimension are not
necessarily related and tools for the Takens’ embedding dimension cannot generally be used for
the permutation dimension.

To determine the accuracy of these methods, the resulting delays were compared to each of
the standard MI approach of Fraser and Swinney [148], expert suggested parameters of various
categories of dynamical systems and data sets, and optimal parameters calculated if the dynamical
system model allowed for various differing dynamical states to be simulated. This result showed
that the sublevel set persistence of the time domain method provided the most accurate delays for
all of the systems analyzed except for EEG data. However, due to the differing sampling rates

69

for different EEG data sets, the expert suggested delay of 1–3 may not be accurate for the EEG
data investigated in this work. We do not recommend using the sublevel set persistence of the
frequency domain as this method consistently provided delays that were too small for continuous
flow differential equations and too large for periodic functions. Our noise robustness analysis
revealed that the methods we developed here were robust to additive noise up to the SNR values
as low as 10 dB. We also analyzed the robustness of the methods to signal length and found they
provide an accurate delay even for short time series with the general suggestion of signal length
L > 15τ .

In comparison to the expert suggested dimensions and the optimal dimensions from comparing
chaotic and periodic signals, our dimension parameter selection method accurately provided simi-
lar results for nearly all of the systems investigated in this work. Additionally, the range suggested
using our method was more precise than the dimensions suggested by experts giving the user a
more definite answer to an appropriate permutation dimension as these results can vary based on
simulation parameters. We hypothesize that using techniques such as a weighted average to com-
bine the parameters from the different methods based on knowledge of the system could lead to
even more optimal results. However, this is a topic for future research.

2.2.7 Summary of the used data and models

2.2.7.1 Lorenz System
The Lorenz system used is defined as

dx
dt

= σ(y− x),
dy
dt

= x(ρ − z)− y,
dz
dt

= xy−β z. (2.25)

The Lorenz system had a sampling rate of 100 Hz. This system was solved for 100 seconds and
the last 20 seconds were used. For a periodic response parameters σ = 10.0, β = 8.0/3.0, and
ρ = 100 were used. For a chaotic response parameters σ = 10.0, β = 8.0/3.0, and ρ = 105 were
used.

2.2.7.2 Rössler System
The Rössler system used was defined as

dx
dt

=−y− z,
dy
dt

= x+ay,
dz
dt

= b+ z(x− c), (2.26)

with parameters of a = 0.10, b = 0.20 for periodic and b = 0.1 for chaotic, and c = 14, which
was solved for 1000 seconds with a sampling rate of 15 Hz. Only the last 2500 data points of the
solution were used.

70

2.2.7.3 Coupled Rössler-Lorenz System
The coupled Lorenz-Rössler system is defined as

dx1

dt
=−y1 − z1 + k1(x2 − x1),

dy1

dt
= x1 +ay1 + k2(y2 − y1),

dz1

dt
= b2 + z1(x1 − c2)+ k3(z2 − z1),

dx2

dt
= σ(y2 − x2),

dy2

dt
= λx2 − y2 − x2z2,

dz2

dt
= x2y2 −b1z2,

(2.27)

where b1 = 8/3, b2 = 0.2, c2 = 5.7, k1 = 0.1, k2 = 0.1, k3 = 0.1, λ = 28, σ = 10, and a = 0.25
for a periodic response and a = 0.51 for a chaotic response. This system was simulated at a
frequency of 50 Hz for 500 seconds with the last 30 seconds used.

2.2.7.4 Bi-Directional Coupled Rössler System
The Bi-directional Rössler system is defined as

dx1

dt
=−w1y1 − z1 + k(x2 − x1),

dy1

dt
= w1x1 +0.165y1,

dz1

dt
= 0.2+ z1(x1 −10),

dx2

dt
=−w2y2 − z2+ k(x1 − x2),

dy2

dt
= w2x2 +0.165y2,

dz2

dt
= 0.2+ z2(x2 −10),

(2.28)

with w1 = 0.99, w2 = 0.95, k = 0.25 for periodic and k = 0.3 for chaotic. This was solved for 1000
seconds with a sampling rate of 10 Hz. Only the last 150 seconds of the solution were used.

2.2.7.5 Chua Circuit
Chua’s circuit is based on a non-linear circuit and is described as

dx
dt

= α(y− f (x)),

dy
dt

= γ(x− y+ z),

dz
dt

=−βy,

(2.29)

71

where f (x) is based on a non-linear resistor model defined as

f (x) = m1x+
1
2
(m0 +m1) [|x+1|−|x−1|] . (2.30)

The system parmeters were set to β = 27, γ = 1, m0 = −3/7, m1 = 3/7, and α = 10.8 for a
periodic response and α = 12.8 for a chaotic response. The system was simulated for 200 seconds
at a rate of 50 Hz and the last 80 seconds were used.

2.2.7.6 Mackey-Glass Delayed Differential Equation
The Mackey-Glass Delayed Differential Equation is defined as

x(t) =−γx(t)+β
x(t − τ)

1+ x(t − τ)n (2.31)

with τ = 2, β = 2, γ = 1, n = 7.75 for periodic and n = 9.65 for chaotic. This was solved for 400
seconds with a sampling rate of 50 Hz. The solution was then downsampled to 5 Hz and the last
200 seconds were used.

2.2.7.7 Periodic Sinusoidal Function
The sinusoidal function is defined as

x(t) = sin(2πt) (2.32)

This was solved for 40 seconds with a sampling rate of 50 Hz.

2.2.7.8 Quasiperiodic Function
This function is generated using two incommensurate periodic functions as

x(t) = sin(πt)+ sin(t). (2.33)

This was sampled such that t ∈ [0,100] at a rate of 50 Hz.

2.2.7.9 EEG Data
The EEG signal was taken from andrzejak et al. [170]. Specifically, the first 5000 data points

from the EEG data of a healthy patient from set A (file Z-093) was used and the first 5000 data
points of a patient experiencing a seizure from set E (file S-056) was used.

2.2.7.10 ECG Data
The Electrocardoagram (ECG) data was taken from SciPy’s misc.electrocardiogram data set.

This ECG data was originally provided by the MIT-BIH Arrhythmia Database [171]. We used data
points 3000 to 5500 during normal sinus rhythm and 8500 to 11000 during arrhythmia.

2.2.7.11 Logistic Map
The logistic map was generated as

xn+1 = rxn(1− xn), (2.34)

with x0 = 0.5 and r = 3.95. Equation 2.34 was solved for the first 500 data points.

72

2.2.7.12 Hénon Map
The Hénon map was solved as

xn+1 = 1−ax2
n + yn,

yn+1 = bxn,
(2.35)

where b = 0.3, x0 = 0.1, y0 = 0.3, and a = 1.4. This system was solved for the first 500 data points
of the x-solution.

2.2.7.13 Double Pendulum
The double pendulum is a staple benchtop experiment for investigated chaos in a mechanical

system. A point-mass double pendulum’s equations of motion are defined as

dθ1

dt
= ω1,

dθ2

dt
= ω2,

dω1

dt
=

N1

ℓ1(2m1 +m2 −m2 cos(2θ1 −2θ2))
,

dω2

dt
=

N2

ℓ2(2m1 +m2 −m2 cos(2θ1 −2θ2))
,

N1 =−g(2m1 +m2)sin(θ1)−m2hsin(θ1 −2θ2)

−2sin(θ1 −θ2)m2(ω
2
2ℓ2 +ω

2
1ℓ1 cos(θ1 −θ2)),

N2 = 2sin(θ1 −θ2)(ω
2
1ℓ1(m1 +m2)

+g(m2 +m2)cos(θ1)+ω
2
2ℓ2m2 cos(θ1 −θ2)),

(2.36)

where the system parameters g = 9.81 m/s2, m1 = 1 kg, m2 = 1 kg, ℓ1 = 1 m, and ℓ2 = 1 m. The
system was solved for 200 seconds at a rate of 100 Hz and only the last 30 seconds were used
with initial conditions [θ1,θ2,ω1,ω2] = [0.4 rad,0.6 rad,1,1] for periodic and [θ1,θ2,ω1,ω2] =
[0,3 rad,0,0] for chaotic. This system will have different dynamic states based on the initial con-
ditions, which can vary from periodic, quasiperiodic, and chaotic.

73

CHAPTER 3

TEXTURE ANALYSIS
This chapter outlines the texture analysis techniques using TDA. Specifically, data from a manufac-
turing process called Piezo Vibration Striking Treatment (PVST) where a texture is intentionally
produced on a surface to improve its mechanical properties was analyzed using TDA to quantify
consistency in specific features of the texture. Three features of the textures were quantified: depth,
roundness, and pattern shape. Depth and roundness methods from [8] are presented in Section 3.1
and the pattern shapes are characterized from [9] in Section 3.2.

3.1 Characterizing Depth and Roundness
Quantifying patterns in visual or tactile textures provides important information about the pro-

cess or phenomena that generated these patterns. In manufacturing, these patterns can be intention-
ally introduced as a design feature, or they can be a byproduct of a specific process. Since surface
texture has significant impact on the mechanical properties and the longevity of the workpiece,
it is important to develop tools for quantifying surface patterns and, when applicable, comparing
them to their nominal counterparts. While existing tools may be able to indicate the existence of a
pattern, they typically do not provide more information about the pattern structure, or how much
it deviates from a nominal pattern. Further, prior works do not provide automatic or algorithmic
approaches for quantifying other pattern characteristics such as depths’ consistency, and varia-
tions in the pattern motifs at different level sets. This paper leverages persistent homology from
Topological Data Analysis (TDA) to derive noise-robust scores for quantifying motifs’ depth and
roundness in a pattern. Specifically, sublevel persistence is used to derive scores that quantify the
consistency of indentation depths at any level set in Piezo Vibration Striking Treatment (PVST)
surfaces. Moreover, we combine sublevel persistence with the distance transform to quantify the
consistency of the indentation radii, and to compare them with the nominal ones. Although the tool
in our PVST experiments had a semi-spherical profile, we present a generalization of our approach
to tools/motifs of arbitrary shapes thus making our method applicable to other pattern-generating
manufacturing processes.

3.1.1 Introduction
Extracting information from surface images is an important field of research with many ap-

plications such as medical imaging [172], remote sensing [173, 174], and metrology. In many
instances, the texture on the surface represents a pattern with a tessellation of a repeating, base ge-
ometric shape called a motif. These patterns might be intentionally introduced either for functional
reasons, e.g., adding friction, or to realize certain aesthetics. Alternatively, surface patterns can be
an inevitable side effect of the process that generated the surface, such as machining marks.

Characterizing the resulting patterns can provide valuable information on the surface proper-
ties, and it can serve as a useful diagnostic of the production process. The quantification of patterns
depends on the involved motifs. For example, a pattern of zero-dimensional motifs (points) is char-
acterized by the lattice formed by the points. One-dimensional motifs (lines) can produce patterns
that are characterized by the lines’ geometry and the spacing between them (for parallel lines).
Patterns can also emerge in two dimensions as a result of the line intersections.

One-dimensional motifs (lines) can produce patterns that are characterized by the lines’ geom-

74

etry and the spacing between them (for parallel lines), or by the two dimensional pattern that can
result from line intersections.

Of particular interest is the challenge of characterizing three dimensional patterns imprinted
onto nominally planar surfaces. This scenario applies to many scientific domains that use image
data to extract information about certain systems or processes. The image can be viewed as a spatial
height map that contains information about the motifs. In particular, in this setting quantities
of interest include the structure of the two-dimensional projections of the motifs’ centroids, the
motifs’ depths consistency, and the regularity of the shape of the generalized cones produced from
intersections of level sets with the motifs. For example, if the motifs are tessellated semi-spheres in
the plane, then the quantities of interest are the centers of the circular two-dimensional projections,
the depths of the semi-spheres across the surface, and the deviations of the circles’ perimeters as a
function of the motifs’ height.

One specific field where surface texture description plays an important role is at the intersection
of manufacturing and metrology. Surface metrology of manufactured parts is directly related to
fit, wear, lubrication, and corrosion [175] as well as fatigue resistance [176–178]. In additive
manufacturing, surface texture is further used to understand and optimize the process [179–181].

In the field of manufacturing, texture analysis is also a valuable quality control tool that can
be used to investigate the effectiveness of a manufacturing process and obtain information about
the current state of the machine being used [182]. For example, it has been shown that surface
textures can be analyzed to identify the occurrence of chatter in a machining process [183–188].
Surface texture analysis has also been used to monitor and indicate tool wear in a machining pro-
cess [189–196], detect surface defects such as cracks and scratches [197–201], and for quantifying
surface roughness of a part [202–204]. Surface texture can also have a significant effect on the
mechanical properties of a part, and as a result, a number of processes have been developed to
intentionally introduce surface texture in order to obtain improved mechanical properties. Exam-
ples of such a processes include shot peening, elliptical vibration cutting and texturing, and piezo
vibration striking treatment (PVST). Shot peening has been shown to improve properties such as
the roughness, hardness and wear resistance of a part [205–208] and can increase the ultimate and
yield strengths [209, 210]. Elliptical vibration cutting is another process that results in a surface
texture left behind on the part by inducing another direction of motion in the cutting process cre-
ating an elliptical cutting pattern [211]. These cuts leave a texture behind on the surface of the
part that reduces tool wear and burrs, and improved surface properties such as roughness [212].
Models have also been developed to describe the relationships between the system parameters and
the resulting textures for this process [213]. Another example of a process that exploits surface
texture for improving mechanical properties is piezo vibration striking treatment (PVST) [214],
see Section 3.1.1.2. This paper mainly focuses on analyzing results from the PVST process, but
avenues are offered for studying textures with differing properties.

Most classical applications of texture analysis involve high resolution gray-scale images that
provide depth information of the surface. A variety of different methods have been used for ana-
lyzing these images ranging from statistical techniques to wavelet transform approaches [194,204,
215]. The classical approaches can be grouped into four categories that are summarized in Fig. 3.1.
For statistical methods, the gray level co-occurrence matrix (GLCM) is usually of interest in which
a matrix is obtained containing information on the probabilities that adjacent pixels would have the
same intensity [215]. Statistical measures are then computed on this matrix leading to quantifica-
tion of broad features such as smoothness, coarseness and regularity of a texture [183, 216].

75

Figure 3.1 Block diagram summarizing the classical texture analysis methods and their basic
descriptions.

Another method of texture analysis is referred to as structural texture analysis. This method
works best for tessellated patterns of predefined fundamental features called primitives [216]. Sta-
tistical quantities such as the image autocorrelation function provide information about the sizing
of the primitives and a quantification of the texture periodicity [216]. The problem with this method
is that the primitives and relative positions need to be manually defined by the user, and the results
can vary significantly based on these decisions [216, 217].

The final two methods are model based approaches and transform approaches. Model based
methods utilize statistical models such as a Hidden Markov Model [189] to classify texture features
from the gray level co-occurrence matrix. Lastly, the transform approach uses frequency methods
such as Fourier or wavelet transforms to extract information about feature frequency or relative
sizing in the texture [217]. However, with transform methods, relative positioning of the texture
features is lost in the process and further analysis is required to obtain this information [218].
With all of the methods discussed so far, expert knowledge of the process/analysis is required for
interpreting the results, and it is difficult to target a specific feature in a texture such as the specific
pattern shape or depth of features.

3.1.1.1 Topological Approaches to Texture Analysis
This paper describes a Topological data analysis (TDA) approach for quantifying surface tex-

ture and pattern, and it shows the validity of this approach by applying it to PVST surface images.
Figure 3.2 shows an overview of the developed pipeline, and the first box in the figure shows an
example surface image. While our prior work extended the the TDA approach in [219] to classify
surface patterns formed by the indentation centers in PVST processes [9] (second box in Fig. 3.2),
quantifying the consistency of indentation depths (third box in Fig. 3.2), and characterizing gener-
alized radii of indentation shapes, e.g., the profile of the indenter at different heights (last box in
Fig. 3.2) are two important problems that have not been addressed before.

Specifically, the striking depth and roundness of semi-spherical PVST indenters are essential
for characterizing a PVST surface and they enable predicting the impact forces in the PVST pro-
cess [214]. Quantifying these properties allows process control and ensures consistent mechanical
properties for the part, if the impact forces are constant from strike-to-strike. We provide a frame-
work for automatically characterizing general patterned texture, and apply it to quantitatively de-
scribe PVST surfaces. Within this framework, we characterize striking depth and roundness from
PVST surface images using sublevel persistent homology (a tool from TDA). Another contribution
of this work is locating the specific feature depths to locate a reference height for the surface. This

76

enables not only quantifying the indentation roundness at different heights, but it also allows esti-
mating surface deviations from the theoretical z = 0 reference plane, e.g., the surface slope. The
developed tools, along with our previously described method for quantifying the patterns of the
indentation centers [9], provide a quantitative approach for characterizing surfaces from texture-
producing processes such as PVST.

Figure 3.2 An overview flow chart for PVST texture characterization. Starting with a PVST
image, three main features can be classified (depth, roundness, and pattern).

We start by describing the PVST process in 3.1.1.2. We then introduce the relevant TDA
background followed by derivations for the theoretical expressions used for quantifying texture
features in Section 3.1.2. The results are presented in Section 3.1.3, and the concluding remarks are
listed in Section 3.1.5. Finally, CAD simulation of PVST patterns, a feature score noise analysis,
and surface slope and angularity estimation are included in the appendices.

3.1.1.2 Piezo Vibration Striking Treatment (PVST)
PVST is a process in which a piezo stack controlled with a CNC machine is used to impact the

surface at a specific frequency leaving behind a surface texture on the part. Geometric character-
istics of the texture are chosen by varying process parameters such as the shape of the indenter,
the impact frequency, and scanning speeds. The diagram shown in Fig. 3.3 demonstrates how the
PVST process generates a texture on the surface as a result of the process parameters. We see that

Figure 3.3 PVST diagram showing the mechanics of the PVST process and how the texture can be
controlled using the frequency f , the in plane scanning speeds vx and vy, and the overlap ratio ro.

the piezo stack produces oscillations in the impact tool that plastically deform the surface at regular

77

intervals, and the stack is translated in the plane using the CNC machine to produce the texture.
Parameters such as the oscillation frequency f , in-plane speeds vx and vy, and the overlap ratio ro
can be varied to produce different textures. As a result, it is important to be able to compare the
output surface texture to the nominally expected texture based on the input process parameters.
This comparison will allow for quantification of the process effectiveness and ensuring that the
mechanical properties are within the expected tolerances compared to the results for the nominal
texture.

3.1.2 Background and Theory
Section 3.1.2.1 provides a brief background on persistent homology, the main tool from TDA

that we use in this work. Sections 3.1.2.2 and 3.1.2.3 show the derivations for the expressions
that will be used to score the strike depths and roundness, respectively, of the PVST surfaces.
Section 3.1.2.3 shows how the process knowledge was applied to locate the strike minima and
obtain the surface reference height. Section 3.1.2.4 describes how our approach can be generalized
to other tool shapes.

3.1.2.1 Persistent Homology Background
Persistent homology (PH) is a tool from topological data analysis (TDA) that allows for quan-

tification of features in a data set by providing information about things like connectivity and loops
in the data. We will describe PH through the lens of a PVST image rather than presenting abstract
homology constructs, and we refer the reader to [90] for a comprehensive presentation of TDA.

In this work, we use a specific type of PH called sublevel set persistent homology in which
a height function is defined on the image. Let I be the p× q image matrix of interest defined
on the interval [0,1]. We define a parameter T ∈ R to be an arbitrary height in the image and
IT = f−1[0,T] to be a new image that is obtained by taking the sublevel set of I up to a height
T . Parameterizing the image sublevel sets allows for the topology to be studied as T is varied
using persistent homology. The topology is determined for each sublevel set of the image by only
including pixels with gray scale values at or below the threshold T , and the homology is computed
at each height [220]. This allows tracking the birth and death of connected components in the
image, and the formation of loops in the process as T is increased.

We illustrate the concept of sublevel PH using a synthetic surface constructed by superimpos-
ing 6 Gaussian distributions as shown in Fig. 3.4 (d). This surface can be compared to a PVST
grid if each Gaussian distribution is imagined to be a strike in the PVST scan. The example image
shows 6 prominent structures (blue) resulting from the Gaussian distributions and due to the rela-
tive positions, we see two loops in the image between the 6 components shown as orange circular
structures. We will use sublevel persistent homology on this image to capture the aforementioned
features in a quantifiable manner. The image in Fig. 3.4 (d) was thresholded for all T ∈ [0,1] and
persistence was used to determine the image topology at each height and to track the formation of
connected components and loops in the image. We note that the 0D homology or H0 tracks the
connectivity of the features and 1D homology or H1 tracks the loops in the persistence diagram.
The example in Figs. 3.4 (e-g) shows three different level sets for the full surface with correspond-
ing binary images in Figs. 3.4 (a-c). Starting with Fig. 3.4 (a), it is clear that 6 components were
born in the image at this threshold, but two of them have connected or merged at this height. This
connection is indicated in the persistence diagram by plotting the (birth, death) coordinate for the

78

younger of the two classes, i.e., the class that appeared at a higher T value. We plot this connection
as a red point with coordinate (0.17,0.27) in Fig. 3.4 (h). Figure 3.4 (b) shows that increasing
T to 0.6 causes all 6 classes to connect into one component that persists to ∞. This is shown in
the persistence diagram by plotting 4 more points at (0.105,0.38), (0.11,0.49), (0.08,0.56), and
(0.11,0.59). The final red point indicates the infinite lifetime of the overall object on the dashed
line. Note also that at a threshold of 0.58, the left loop is born meaning that a closed loop can be
formed in the white region around a black region as shown in Fig. 3.4 (b) at T = 0.6. A second
loop is born at 0.602 shown in Fig. 3.4 (c) at T = 0.65. When the threshold height reaches the
point where the loops fill in with white in the level set, the loop dies and the point is plotted in
the persistence diagram. For this example, the loops are born at 0.58 and 0.602, and die at 0.69
and 0.80 respectively as shown in Fig. 3.4 (h). As T reaches its highest value at 1 (Fig. 3.4 (h)),
the full persistence diagram is obtained. The loop on the right side is visually larger than the left
one in Fig. 3.4 (d), and this is indicated by the top blue square point having a larger distance to the
diagonal in the persistence diagram giving that loop a longer lifetime. The distribution of points in
the persistence diagram can then be studied to compare to the expected distribution of persistence
pairs for a nominal surface.

A major benefit of utilizing sublevel persistence to study various features of a function is that
it has been shown to be stable under small perturbations due to noise [154]. Specifically, the
bottleneck distance between persistence diagrams is defined as dB(X ,Y) = infγ supx||x− γ(x)||∞
where x ∈ X and y ∈ Y are the persistence diagrams (birth and death coordinates) and γ is the set
of possible matchings between X and Y . If one diagram contains more persistence pairs, those
pairs are matched to the diagonal in γ . The main theorem in [154] states that for two continuous
well-behaved functions, f and g, the bottleneck distance satisfies,

dB(D(f),D(g))≤ || f −g||∞, (3.1)

where D(f) and D(g) are the sublevel persistence diagrams for f and g. Assume that f is the
nominal texture surface and g is the same texture that contains additive white noise. We represent
the textures here as functions f ,g : R2 −→ R where the output of the functions is a depth map
for the texture. Equation (3.1) states that the bottleneck distance between the nominal and noisy
surface persistence diagrams will remain bounded by the largest deviation between the surfaces.
This result allows for noise robust comparisons between the nominal and experimental texture
persistence diagrams.

3.1.2.2 Strike Depth
In order to compare the experimental persistence results with the nominal surface pattern, we

need to derive expressions that describe the persistence of nominal patterns as a function of the
process parameters. We start with the PVST strike depth, and we consider the scenario of deriving
the sublevel persistence of a nominal PVST grid.

Theoretical Expressions: Based on the PVST process inputs, we expect the ideal texture to
consist of a square grid of overlapping circular indentations where all strikes have uniform depths.
Consider the side views of a single row and column in a perfect PVST lattice with arbitrary overlap
ratios in Fig. 3.5. where R is the nominal radius of the circle obtained from a PVST impact, dx
and dy are the horizontal and vertical distances between centers accounting for overlap ratios. In

79

Figure 3.4 Sublevel persistent homology example. (a-c) shows the surface level set represented as
a binary image at 3 threshold heights, (d) shows the full surface image (e-g) shows the
corresponding 3D surface plots for the thresholded images and (h) shows the full sublevel set
persistence diagram for the surface.

Figure 3.5 Arbitrary PVST lattice diagram with a grid top view (a), section views for the strike
rows (b) and columns (c) to illustrate the geometry of a PVST grid,

80

general, the grid does not have to be square so we derive our expressions assuming a general grid
shape and apply the special case for a square grid later. In the horizontal direction, the overlap
ratio is defined by

rx =
2R−dx

2R
, (3.2)

where rx is the overlap ratio in the x direction. Using the geometric expressions in Fig. 3.5, hx
measured from the maximum depth of the impact can be computed using

hx =
1
2

(
2R−

√
(2R)2 −dx

2
)
, (3.3)

where hx is the height at which all of the impact rows merge. Combining Eq. (3.2) and Eq. (3.3)
to eliminate dx gives an expression for the height hx in terms of the impact radius and the overlap
ratio

hx = R
(

1−
√
(2− rx)rx

)
. (3.4)

Similar expressions can be obtained for the vertical direction by replacing x with y. In order to
normalize Eq. (3.4), we rescale the radius of the PVST strikes at maximum depth to one. This is
consistent with the PVST gray scale images used for the experimental analysis. This means that
Eq. (3.4) can be normalized by setting R = 1 as this makes the connecting height 1 for an overlap
ratio of 0. The normalized heights will be denoted by hx and hy, respectively, and can be computed
using

h = 1−
√
(2− r)r, (3.5)

where h is the height in the x or y direction as a function of the overlap ratio r in the x or y direction
respectively. Notice that Eq. (3.5) achieves maximum value when r is zero and minimum value
when r is one.

Without loss of generality, we assume that rx > ry. This means that the horizontal rows will
connect before the columns because hx < hy. Therefore, if there are p rows in the grid, p classes
will die at hx and if there are q columns in the grid, q more classes are expected to die at hy in the
0D persistence diagram when p× q classes are born at h = 0. A theoretical persistence diagram
was generated for the scenario when q > p shown in Fig. 3.6, but in general the relative sizes
of p and q can vary depending on the number of rows and columns in the grid. For the images

Figure 3.6 Theoretical sublevel persistence diagram and histogram for the striking depths for an
arbitrary p×q grid with critical heights hx and hy.

of interest, it was expected that the grid would be square (p = q = n) and the overlap ratio was

81

constant in both directions (rx = ry = r). As a result, we expect n2 classes to be born at 0 and
die at a height h. Table 3.1 shows the expected lifetime of the PVST strikes for different overlap
ratios using Eq. (3.5). See Section 3.1.6 for CAD-based simulations used to confirm the theoretical
derivations.

Table 3.1 Expected striking depth lifetimes for different overlap ratios where the grid is square
(n×n) strikes, and the heights have been normalized to correspond to a strike radius of 1.

Overlap Ratio 0% 25% 50%
Lifetime (h) 1 0.339 0.134

Depth Score: In this section we develop a score to quantify the uniformity of striking depths
thus allowing a comparison between the experimentally measured depths and their nominal coun-
terparts. We start by obtaining nominal and experimental histograms to show the sample distri-
butions of the sublevel persistence lifetimes of the strikes. We plot probability density on the x
axis, and persistence lifetime on the y axis where the experimental lifetimes come from a direct
persistence computation on the image, and the nominal distribution is obtained from the theoretical
expressions. Note that the number of histogram bins for the experimental images was determined
using Rices Rule which states that the number of bins k is computed using k = ⌈2 3

√
n ⌉ where n

is the number of persistence pairs in the persistence diagram [221]. Once the two distributions
are obtained, we compute the Earth Movers Distance between them to quantify the differences
between the distributions [222]. A normalized score was desired to allow for comparison of the
earth movers distances for the striking depth distributions. The Earth Movers Distance (EMD) can
be analytically analytically computed according to

EMD(u,v) = inf
π∈Γ(u,v)

E(x,y)∼π [|x− y|], (3.6)

where u and v are the two distributions, EMD is the earth movers distance between u and v, and
Γ is the set of distributions that exist between u and v. In other words, the EMD computes the
minimum amount of work required to transform one distribution into the other [222].

It should be noted that Eq. (3.6) can be used to compare any two distributions u and v, so it
would be straight forward to directly compare the nominal and experimental persistence diagrams
to measure the combination of feature depth and surface flatness. While this is a perfectly valid
method for quantifying general differences in the textures, it does not directly provide information
about a specific texture feature of interest as it considers both birth and death of the features. For
this reason, it was chosen to consider the lifetime distributions as probability distributions to isolate
the effect of the feature rather than where it is born in the image and provide a path for normalizing
scores to quantifying these features in a way that is easy to understand for the user.

For the PVST striking depth distributions, the images have been normalized from 0 to 1. This
means that each pixel can only contain a value in the finite interval 0 to 1. As a result, the maximum
possible persistence lifetime for a feature occurs when the feature is born at zero and survives for
the entire range of the height function. Conversely, the minimum persistence lifetime occurs when
the feature is born at zero and survives for an infinitesimal time. The difference between these
lifetimes corresponds to the maximal earth movers distance for any two images because Eq. (3.6)

82

is independent of the number of observations. This means that in this case, the earth movers
distance has an upper bound where one distribution has all persistence pairs with lifetimes at 1 and
the second distribution has all persistence pairs with 0 lifetime. Therefore, the maximum possible
earth movers distance in this case is 1, and the distances computed for the different overlap ratios
can be directly compared. We define the depth score 0 ≤ D̄ ≤ 1 according to

D̄ = 1−EMD, (3.7)

where D̄ = 1 when the actual depth distribution is identical to the expected distribution, while
D̄ = 0 when the distributions are the farthest apart. A score between 0 and 1 allows for character-
izing the effectiveness of the PVST striking depth distribution as a percentage score where higher
percentages indicate improved uniformity in the depth distribution of PVST strikes.

3.1.2.3 Strike Roundness
Since sublevel persistence does not encapsulate spatial information, it cannot be used by itself

to characterize roundness of the PVST strikes. Therefore, we needed a tool that can encapsulate
that information before using persistence to characterize the shape of the PVST strikes. The tool
we used is the distance transform, which transforms each pixel of the image to display its euclidean
distance to the nearest background pixel (black) as a gray scale intensity. Each image needed to
be thresholded at a particular height to compute the distance transform, i.e., any pixel below the
height is set to black (0) and any pixel above is set to white (1). The distance transform then sets
each pixel to a gray scale value encoding that pixels minimum euclidean distance to the nearest
black pixel. In other words, the image is transformed to show information about the size of the
circles in the third dimension rather than the depths. To obtain theoretical results for quantifying
the roundness of the strikes, we first needed to develop a transformation to convert a number of
pixels into a physical distance as described by

x =
npw

P
, (3.8)

where np is the number of pixels corresponding to distance x in the image with P×P pixels and
w is the width or height of the image in any desired unit system. We note that x and w must have
the same units. Using the nominal process parameters such as the in plane speeds, overlap ratio
and frequency, the nominal circle radius can be computed. An example case for computing the
nominal radius is as follows: For a frequency of f , a speed vx in mm/min, image width w in mm,
the nominal radius in mm can be computed using

R =
vx

120 f
. (3.9)

The factor of 120 is an artifact of the unit conversions from minutes to seconds and division by
two to obtain the radius instead of the diameter.

The speed vx is dependent on the overlap ratio with the relationship

vx = 3000(1− r), (3.10)

where 3000 mm/min is the speed that results in a 0% overlap pattern at a frequency of 100 Hz.

83

Substituting the frequency and speed expression into (3.9), we obtain an expression for the
nominal circle radius in terms of the overlap ratio,

R =
1
4
(1− r), (3.11)

where r is the overlap ratio and R is the nominal circle radius in mm at a PVST frequency of 100
Hz. We then threshold the texture at a height T and compute the circle radius at the given height
using the geometry shown in Fig. 3.7 (a). It is clear that as the image threshold height changes, the
circle radius also varies due to the geometry of the strikes. Using the Pythagorean theorem we can
obtain a relationship between σ , h and R as follows

h2 +σ
2 = R2. (3.12)

Solving for σ and setting h = R−T yields the following expression for the nominal radius at a
given threshold height:

σ =
√
(2R−T)T , (3.13)

where T is the threshold height from the bottom of the strike in mm. Using this information, we
can threshold the image at various heights and apply the distance transform to allow for sublevel
persistence to be used for measuring the strike roundness. Basically, the distance transform is
used to encode spatial information as height information, thus allowing us to leverage sublevel
persistence for scoring strike roundness as described in the following sections.

Sublevel Persistence for no overlapping strikes (T < h): Consider the PVST grid with no
overlap shown in Fig. 3.7 (b). When the distance transform is applied to the thresholded grid,
spatial information about the size of the circles is encoded as height information in the shape of
cones (Fig. 3.7 (c)). As the distance from the edge of the circle increases, so does the height of the
cones which can be understood from Fig. 3.7 (b). Applying sublevel set persistence to this grid of
cones allows quantifying the roundness of the circles. We see that as the height of the connectivity

(a) Impact Geometry (b) Binarized Image (c) Distance Transform

Figure 3.7 Converting between a binarized image and its corresponding distance transform
geometry. (a) shows the strike geometry used for converting threshold heights to the radius of the
strike at that height, (b) shows the thresholded image at a height below the critical height T < h
(no overlap), (c) shows the cone geometry resulting from the distance transform of the binarized
image and how the strike radius σ appears in each form.

84

parameter is varied starting at the bottom of the cones, 1 0D class is born at time 0 and remains
to ∞. Applying one-dimensional persistence to the n× n grid of cones we expect n2 1D classes
to be born at 0 and die at σ . 1D persistence was chosen for the roundness application because
we are interested in the lifetimes of cycles in the images as they will provide information about
the roundness of the strike. This was not necessary for the depth measurements because we only
needed to know the depth at which the strikes connected.

Sublevel Persistence for overlapping strikes (T ≥ h): We now generalize the result from the
case with no overlap by thresholding the image above the critical height (h̄) where we obtain an
image with overlapping circles shown in Fig. 3.8 (b). The critical height is the depth at which
water would overflow from the strike into the other strikes and it can be computed using,

h̄ = R(1−
√

(2− r)r), (3.14)

where h is the critical height, R is the nominal circle radius, and r is the overlap ratio. We define
a new parameter ε to indicate the threshold height T in terms of the critical height h̄ using T = ε h̄
where ε defines the threshold height relative to the critical height. If ε < 1, the circles in the
thresholded image do not overlap and the case from Section 3.1.2.3 is used, whereas if ε ≥ 1, the
circles will overlap and a more general relationship needs to be considered. In Fig. 3.8 (a) we
show a binarized image where ε > 1 with strike overlap. When this thresholded image is distance
transformed, a result similar to Fig. 3.8 (c) is obtained where a critical distance a needs to be
considered. The distance a is the height in the distance transformed image where the gap between
the cones connects to the surrounding object. Above a, the circles also disconnect in the filtration
so we have a formation of cycles that can be considered when performing sublevel persistence. To

(a) Impact Geometry (b) Binarized Image (c) Distance Transform

Figure 3.8 Converting between a binarized image and its corresponding distance transform
geometry. (a) shows the thresholded image at a height below the critical height T ≥ h (overlap
present), (b) shows the cone geometry resulting from the distance transform of the binarized
image and how the strike radius σ appears in each form, and (c) shows the geometry used to
obtain expressions for the cone intersection height a.

obtain an expression for a, we consider the triangle shown in Fig. 3.8 (b) and apply the Pythagorean
theorem

a =
√

σ2 −b2. (3.15)

An expression was needed for the side length b in terms of other known parameters. For this, the
center-to-center distance ds of the circles was used because we know that ds = 2R(1− r) from the

85

definition of the overlap ratio. At this point it is important to note that this expression depends on
the full nominal radius R and should not be written in terms of σ because ds remains invariant for
all threshold heights. Observe that, ds = 2b from Fig. 3.8 (b) due to the circle position remaining
constant. Applying the definition of ds to the result for b we obtain an expression for b in terms of
known parameters

b = R(1− r). (3.16)

Substituting b into Eq. (3.15) gives the critical distance

a =
√

σ2 −R2(1− r)2. (3.17)

Effect of High Threshold: Lastly, we consider the gaps between the cones at higher overlap
ratios. For low overlap ratio, the gap heights will span the entire depth of the strike, but as the
overlap ratio increases, the gap height eventually begins to decrease causing the cycles to have
lower lifetimes. To quantify this result, we needed to compute the height of the gaps as a function
of the overlap ratio. Consider the grid diagonal cross section shown in Fig. 3.9. We see that

Figure 3.9 Nominal PVST grid with a high overlap ratio to demonstrate diagonal cross section
overlap height.

this section view results in the same triangle that was used to determine the closing height when
categorizing the striking depths with the difference being the addition of the value dxy. This value
can be computed using

dxy =
√

d2
x +d2

y , (3.18)

or if the grid is square
dxy = 2

√
2R(1− r), (3.19)

where R is the nominal strike radius. If we apply the Pythagorean theorem in the same way as the
depth results, we obtain an expression for hxy,

hxy = R(1−
√

1−2(1− r)2). (3.20)

Substituting for an overlap ratio of 0.5, and the nominal radius of 1 due to the normalized depths,
we obtain a value of hxy = 0.29289. It should be noted that hxy will be equal to the nominal radius

86

R as long as the following inequality is satisfied,

dxy > 2R. (3.21)

Here, if we assume equality, and substitute Eq. (3.19), we find that this corresponds to an overlap
ratio of r = 0.29289. Because the 50% overlap ratio case is larger than 29.28% overlap, we needed
to consider that all of the 1D persistence loops merge into a single loop above the height hxy
whereas this phenomena was not present in the lower overlap ratio cases. This single component
will have zero lifetime if the grid continues on forever.

Roundness Expected Results Summary: We summarize the PVST roundness expected 1D per-
sistence results for the distance transformed images as follows:

1. If ε < 1, we expect n2 classes to be born at 0 and die at σ .

2. For ε > 1, we expect 1 class to be born at 0 and die at σ , and n2 −1 classes to be born at a
and die at σ .

3. If r > 2−
√

2
2 ≈ 0.29 and T > hxy, we expect one object to be born at time 0 and die at 0.

See Appendix 3.1.6 for CAD-based simulations that confirm the theoretical results.

Finding Reference Heights: Due to variations in strike forces, initial surface heights, and arti-
facts in the images the strike minima do not lie uniformly at a height of 0 in practice, so a reference
plane is required to determine what height to compare the roundness results with using the theo-
retical model. If the reference height is not used, then a shift would be present in the results that
would skew the final roundness measurements. The first attempt at locating a reference height
was to use the first height at which the persistence diagram contained a number of pairs equal to
the number of strikes in the image. The problem with this approach is that the features that were
obtained were due to noise in the image and very few of the strike minima were present in the
image as shown in Fig. 3.10 where we see the first threshold height in the 50% overlap image that
contains 192 = 361 features. It appears that no strikes have been located in the top left corner of
the image so this would be a poor estimate of the reference height for this image.

In order to obtain a better reference height, we needed to first utilize knowledge of the surface
to filter the persistence diagram down to the features that corresponded to the strike minima of the
surface.

We locate the strike minima by computing sublevel persistence on the surface and taking the
birth times to be the minima of each feature. These points are plotted as shown in Fig. 3.11 (a).
The critical points have been matched to their location in the persistence diagrams by color. From
the color coding, it was clear that the blue/purple/green features corresponded to the strikes and
the orange/yellow/red features corresponded to locations between the strikes. This observation
allowed for the persistence diagram to be filtered in order to obtain the features of interest. Note
that these images have been down sampled to 300×300 down from 6000×6000 to reduce the
number of features in the image. The process begins by observing that there were approximately 35
features in this image, so the goal was to algorithmically filter the persistence diagram such that the
resulting 35 features correspond to the actual strike minima. We start by filtering out low lifetime

87

(a) Binarized Image (b) Distance Transform

Figure 3.10 50% overlap ratio image thresholded at the reference height (T = 0.24) found by
taking the first threshold height that contained 192 = 361 features in the persistence diagram. The
binarized image is shown on the left and distance transformed image on the right.

persistence pairs by computing a histogram of the lifetimes, and thresholding the lifetime above
any point that contained a bar height larger than the number of desired features. This threshold
resulted in the persistence diagram shown in Fig. 3.11 (b). It is clear that the features removed up
to this point are attributed to noise as we see that each strike still retained at least one critical point
after this step. We also observe that the features born at exactly time zero are due to the artifacts
in the image, so the birth times were restricted to be larger than 0. The final step is to remove
critical points from the right of the persistence diagram (red region) until only the desired number
of features remain in the image; the result of this step is shown in Fig. 3.11 (c). The remaining
features in the final filtered persistence diagram are taken to be the strike minima and the average
height of these points is used as the reference height. Applying this process to the 25% and 50%
overlap images yielded the results in Fig. 3.12. We see that the located features in the filtered
persistence diagrams are exceedingly close to the true strike minima and taking the average height
of these points provided a good estimate of the reference zero height. A byproduct of this process
is to enable estimating the surface slope/angularity by computing a regression plane to using the
strike minima, as shown in Appendix 3.1.8.

Roundness Score: To quantify the feature roundness, the images needed to be thresholded at
many different heights to compare the shapes to the nominal distribution over the entire feature.
The output of this process is a curve for the earth movers distance as a function of the threshold
height of the image. The overall feature roundness is then summarized by computing the area under
this curve and diving by the interval width to remove the effects of different reference heights. For
a general impact geometry, the area under this curve can be computed using Eq. (3.22),

R̄G =
1

1−hr

∫ 1

0
EMD(T) dT, (3.22)

where hr is the reference height of the image and R̄G is the generalized roundness score for the
texture. We note that this score, by definition, results in a larger score meaning that the texture
shape is further from nominal and a lower score is closer to nominal.

In order to obtain a roundness relationship similar to the percentage based depth score, we need
to define a roundness score that is specific to the spherical impact by normalizing the area with an
upper bound earth movers distance. Similar to the depth score, the earth movers distance at any

88

(a) Original Simplified
Surface Persistence

Diagram.

(b) Low Lifetime Filtered
Persistence Diagram.

(c) Final Filtered Persistence
Diagram.

Figure 3.11 Persistence diagram (PD) filtering on the simplified surface to locate strike minima.
(a) The original PD of the simplified surface, (b) shows the persistence features after removing
low lifetime features, and (c) shows the final filtered PD.

(a) 25% Overlap Filtered Persistence Diagram. (b) 50% Overlap Filtered Persistence Diagram.

Figure 3.12 Persistence diagram (PD) filtering on the simplified surface to locate strike minima.
(a) 25% Overlap filtered PD, (b) 50% overlap filtered PD.

threshold height is bounded above by two images with all pixels differing by the maximal distance
between gray scale intensities. However, the distance transform operation makes it difficult to
determine the maximum possible difference in pixel intensities because it is not possible to have
all distances at the same value if at least one background pixel exists in the image.

To mitigate this issue, we assume for a reasonably generated physical texture, that the features
will be generally close in size to the nominal features. To quantify this assumption, we will say that

89

Figure 3.13 Plot of σ as a function of the image threshold height to demonstrate the worst case
earth movers distance plot.

the experimental feature sizes will have a radius that is at most one nominal radius larger or smaller
than the nominal feature size. By assuming that the experimental features are reasonably close in
size to the nominal texture, it allows for the earth movers distance to be bounded by the radius at
each threshold height and permits the definition of a percentage based score for this feature. For
each threshold height of the image, the nominal radius is defined by σ . The σ curve for a spherical
feature geometry is defined by Eq. (3.13) as a function of the height T ranging from 0 to R where R
is the maximum strike radius. We then introduce the change of variables T = Rt where t ∈ [0,1] is
the image threshold height. This change of variables results in a quarter elliptical curve describing
the maximum earth movers distance as a function of threshold height shown in Fig. 3.13.

The area under this quarter ellipse is computed as π

4 R. A roundness score is then defined by
normalizing the area under the experimental EMD curve by the quarter ellipse area and subtracting
the result from unity to provide a percentage based score similar to the depth score. Equation (3.23)
shows the spherical impact roundness score as a percentage where a higher score corresponds to
the feature roundness being closer to nominal.

R̄ = 1− 4R̄G

πR
(3.23)

The resulting score is specific to the spherical impact shape, and if a score is desired for a different
impact shape, the σ curve specific to that geometry needs to be obtained that bounds the earth
movers distance and the score can be computed in a similar fashion. Note also that if the input
experimental texture contains features that differ significantly from nominal this score will be less
than zero so it should only be used on textures with feature sizes close in size to nominal. However,
the generalized roundness score R̄G can be used for any such texture, but a lower score means that
the texture is closer to nominal in this case. See Appendix 3.1.7 for a quantification of the noise
robustness of the depth and roundness scores.

3.1.2.4 Generalizing for Other Textures
While the methods used in this paper were designed to account for features in a PVST image

created using a semi-spherical tool, the process can be modified to account for any tool shape. One
such example of a generalization of this process arises when a 5-axis milling machine is used to
generate a dimple texture on a part. This process leaves behind elliptical dimples which result in

90

improved texture properties [223]. It is clear that the methods used for analyzing a PVST texture
will not work for this case. Generalizing the expressions used may introduce significant complex-
ities in the analysis, but we provide two potential avenues for doing this. The first method offered
is to apply the techniques in Appendix 3.1.6 where a CAD model is created for the nominal texture
and the nominal persistence diagrams can be computed directly from the images for comparison
with experimental results. This method is the most straight forward and has been shown to provide
results within 5% of the true values for the examples considered in this paper. The second method
is to derive expressions for the theoretical persistence lifetimes using a generalized conic section
to define the cross section shape. Pattern and depth can apply to any texture being analyzed, but
roundness may not be a valid descriptor of the impact shape if it is not spherical. We adopt a
generalized radius feature that applies to a significantly larger set of indenter geometries to be the
generalized conic section [224] described by

ρ(x,y) =
n

∑
i=1

αi||⃗x− b⃗i||p, (3.24)

where ρ(x,y) is the generalized radius as a function of x and y, αi is the ith weight coefficient, x⃗
is a vector of coordinates ((x,y) in this case), b⃗i is the ith focal point of the curve, and p is the
corresponding p-norm of the vector. For the special case of n = 1, α = 1, p = 2, and b is the
center point, we get the equation of a cone which has cross-sections of circles at various heights.
Varying the weights and adding more focal points allows for arbitrary shapes to be formed such as
the curves shown in Fig. 3.14.

Figure 3.14 Example plots of generalized conic sections to demonstrate different tool shape
configurations for generalizing the results in this paper. Red points are the focal points of the
conic, and the blue curve represents the cross section of the impact tool.

3.1.3 Results
The theoretical approaches were implemented on three PVST scans at varying overlap ratios

being 0%, 25% and 50% to quantify the strike depth and roundness in comparison to the respective
nominal textures. We begin by measuring the strike depths for each image.

3.1.3.1 Strike Depth Results
Sublevel set persistence was applied to the PVST images shown in Fig. 3.15 with the corre-

sponding persistence diagrams adjacent to each image. We see a significant portion of the persis-
tence pairs have negligible lifetime and are likely a result of noise in the images. The noise was
removed from these persistence diagrams by generating histograms for the pairs and increasing the
persistence lifetime threshold if any of the histogram bars had a count larger than the number of

91

Table 3.2 Striking depth scores for each overlap ratio. Higher is closer to nominal.

Overlap Ratio 0% 25% 50%

D̄ 41.04% 86.31% 88.63%

strikes in the image. This method is reliant on the observation that a large number of points are
present in the low lifetime region of the persistence diagrams. We also filter by the birth times
of the features by removing features with the largest birth times until the desired number remain
similarly to Fig. 3.11.

Applying these operations to the diagrams in Fig. 3.15, the filtered persistence diagrams in
Fig. 3.16 were obtained. The corresponding computed depth scores are shown in Table 3.2, and it
was clear that the 25% and 50% overlap images had significantly higher depth scores which could
be a result of the strikes being closer together.

Figure 3.15 Unaltered striking depth persistence diagrams (a) 0% Overlap PVST Image, (b) 25%
Overlap PVST Image, (c) 50% Overlap PVST Image

3.1.3.2 Strike Roundness Results
Experimental images were thresholded and distance transformed at 50 heights ranging from 0

to 1 in the image and sublevel persistence was computed at each height. Figure 3.17 shows the
thresholded and distance transformed images at various heights as an example.

The persistence lifetime histograms were used to compute the earth movers distance between
the nominal and experimental distributions which provided a score at each height in the image and
therefore information about the roundness over the entire depth of the strikes. Thresholding was
started at the reference point (T = 0) found from the filtered persistence diagrams. Histograms
such as the ones in Fig. 3.18 were generated at each height to visually compare the theoretical
distribution of persistence lifetimes to the experimental distribution. This process resulted in an
earth movers distance distribution with respect to threshold height as shown in Fig. 3.19. We
expect the experimental distributions to be identical to the theoretical distributions and therefore
have an earth movers distance of 0 at each height. Any deviation from 0 indicates a change in the
uniformity of the roundness. The generalized roundness score was computed for each image by
taking the area under the curves in Fig. 3.19. Qualitatively, we see that the 0% image has the most
deviation in the roundness when compared to the theoretical model due to its larger area under the

92

Figure 3.16 Noise filtered depth persistence diagrams and histograms for each overlap ratio.

earth movers distance curve. Similarly, the 50% overlap image has the most consistent roundness
due to its smaller area. To truly compare these plots, the scores need to be computed because the
domain for each overlap ratio was different. The roundness scores were computed using Eq. (3.23)
because the strikes were nominally spherical. The computed scores are shown in Table 3.3 where
a higher score corresponds to the roundness distribution being closer to nominal.

Table 3.3 Computed roundness scores for each overlap ratio. Note that a higher score corresponds
to the texture being closer to nominal.

Overlap Ratio 0% 25% 50%

R̄ 30.82% 70.02% 74.26%

As expected, the 50% overlap image showed the highest roundness score indicating that this
image had a more uniform roundness distribution, and the 0% image had the lowest roundness
score meaning it had the most deviation from nominal.

93

(a) 0% Overlap (b) 25% Overlap (c) 50% Overlap

Figure 3.17 Example binarized and distance transformed images for each overlap ratio. (a) shows
the 0% overlap image thresholded at a height of 0.47, (b) is the 25% overlap image thresholded at
0.47 and (c) shows the 50% overlap image thresholded at 0.51. Note: Binarized images are shown
on the left and distance transformed images are shown on the right.

Figure 3.18 Roundness lifetime histogram example at a threshold height of 0.1 from the 0%
overlap image.

Figure 3.19 Earth movers distance between the experimental and theoretical roundness lifetime
distributions as a function of threshold height for each overlap ratio.

3.1.4 Analysis Software
The software used for this analysis was implemented as a texture analysis module in the tea-

spoon python library for topological signal processing [56]. This code provides functions for
computing the depth and roundness scores between two input images and the user is responsible
for supplying the nominal and experimental image arrays. The teaspoon functions utilize cubical
ripser for sublevel persistence computations [220].

To generate the nominal images, the process presented in Section 3.1.6 was followed using
SolidWorks to model the surfaces and the algorithm in [225] to convert the CAD model to a point

94

cloud that could be converted to an image.

3.1.5 Conclusion
A novel approach to texture analysis was developed to describe specified features in a texture

using topological data analysis. The tools were presented as an application to the surface treat-
ment process piezo vibration striking treatment (PVST) in which a metal surface is impacted in
a regular pattern by a tool on a CNC machine leaving a texture on the surface. Strike depth and
roundness were successfully characterized using sublevel persistent homology, and scores were
devised to quantify the features in the textural images relative to the nominal texture. In general,
the higher overlap ratio images were found to provide more consistent strikes which could be due
to the higher density of impacts on the surface. Two methods were also presented for generalizing
the application of PVST of which the authors recommend using the CAD model method for an
arbitrary tool shape. These tools allow for engineers to quantify specific features in a texture, a
process which has typically been conducted qualitatively by manual inspection in the past. The
scores obtained for depth and roundness features can be used to measure the effectiveness of the
process that produced the pattern, and in future work, we plan to utilize these scores for extracting
information on the material properties of the work piece.

3.1.6 Appendix — Verifying Theoretical Results
In order to verify the expressions in Section 3.1.2.2, we manufactured gray scale images con-

sisting of perfect PVST strikes in the expected patterns, and computed sublevel persistence to
determine whether the results are consistent with the expressions. CAD models were created to
model the expected surfaces for 0, 25, and 50% overlap ratios as shown in Fig. 3.20. The number
of strikes in each case was decided by assuming a 2.5 × 2.5 mm surface and a striking frequency of
100 Hz. Knowing these two parameters allowed for the in plane speeds to be set to obtain a spec-
ified overlap ratio. Note that the model was set up to only allow for full strikes and any fractional
strike outside of the 2.5 × 2.5 mm window was ignored.

Figure 3.20 Ideal PVST grid CAD models at various overlap ratios. (a) 0% overlap, (b) 25%
overlap, and (c) 50% overlap.

To compute the sublevel persistence of a nominal texture the surface CAD model needed to be
manipulated into a form that was compatible with the cubical ripser. The image pipeline shown
in Fig. 3.21 was used to convert the CAD information into a gray scale image and subsequently
a CSV file for cubical ripser. The CAD model was scaled up by a factor of 10000 to increase
the resolution of the point cloud. This was necessary to mitigate the Solidworks STL resolution
limitations, but the results were not affected due to the normalization of the points at a later step.

95

Figure 3.21 Pipeline for converting the PVST grid CAD model into a grayscale image. (a) shows
the original CAD model, (b) the resulting STL file, (c) shows the point cloud obtained from the
STL file, and (d) the final grayscale depth image.

A Matlab script was implemented to convert the high resolution STL files into point clouds. Note
that the point cloud shown in Fig. 3.21c was only plotting one point per 75 points for viewing
clarity. After converting the model to a point cloud, the algorithm in [225] was used to convert the
point cloud to a gray scale image and a bilinear interpolation created a smooth image as shown in
Fig. 3.21d.

3.1.6.1 Strike Depths
This process was applied to the 0%, 25%, and 50% overlap ratio grids and persistence diagrams

were generated for each case as shown in Fig. 3.22. Table 3.4 shows a comparison of the expected

Figure 3.22 Nominal CAD surface striking depth persistence diagrams and histograms for each
overlap ratio.

lifetimes using the derived results and the results obtained from the CAD model persistence. We
see that the lifetimes obtained were exceedingly close to the expected results. The percent differ-
ences in each case being below 5% allowed for the theoretical results for the striking depths to be
verified and used to compare with the experimental images.

96

Table 3.4 Comparison of the theoretical model lifetimes and the CAD Model generated striking
depth lifetimes

Overlap Ratio 0% 25% 50%

Theoretical Lifetime (h) 1 0.339 0.134

CAD Model Lifetime 0.954 0.337 0.1337

Percent Difference 4.6% 0.5% 0.22%

3.1.6.2 Strike Roundness
To test the theoretical results for the strike roundness, we threshold the images at two differ-

ent heights. One height below the critical height and one above to determine if both results are
consistent with the expressions.

Roundness — No Overlap: First, the images were thresholded at half of the nominal depth
(ε = 0.5)

T = 0.5h, (3.25)

where T is the image threshold height and anything above T is set to black and any pixel below T
is set to white. The threshold and distance transform results for the nominal images are shown in
Fig. 3.23. Because half of the nominal depth was chosen for thresholding, we expect zero overlap
in each case. This means that the persistence diagram should have n2 1D classes born at zero
that die at σ =

√
(2R−T)T . The corresponding persistence diagrams for the half nominal depth

threshold are shown in Fig. 3.23. We see that the 1D persistence shows the expected number of

Figure 3.23 CAD model distance transformed image (strike roundness) persistence diagrams for
ε = 0.5 (T < h) at each overlap ratio.

97

loops that are born at time 0 and die at various heights. Using Eq. (3.8), we have converted the
pixel distances into distances in mm using W = 2.55 mm and P= 5000. The results in Table 3.5 are

Table 3.5 Comparison of CAD model persistence results and theoretical strike roundness for
each overlap ratio (ε = 0.5).

Overlap Ratio 0% 25% 50%

1-D Death [mm] 0.2157 0.1035 0.0445

σ [mm] 0.21651 0.10438 0.04498

Percent Difference 0.372% 0.843% 1.068%

exceedingly close to the expected values from the theory. This implies that the theoretical model
is correct for the case when the circles are not touching.

Roundness — Overlap: To consider a case of overlapping circles, only the 25% and 50% images
can be considered. We test the theory for images that contain overlap by computing persistence
on the CAD models at ε = 1.1. Figure 3.24 shows the thresholded images at this height. The
corresponding persistence diagrams for ε = 1.1 are also shown in Fig. 3.24. We see that there are
n2 −1 1D classes born around a that die at the radius σ . The experimental values are compared to
the nominal values in Table 3.6. It was clear that the results were nearly identical to the theoretical
results which verifies the expressions from Section 3.1.2.3.

Figure 3.24 CAD model distance transformed image (strike roundness) persistence diagrams for
ε = 1.1 (T > h) at each overlap ratio.

98

Table 3.6 Comparison of CAD model persistence results and theoretical strike roundness for
each overlap ratio (ε = 1.1).

Overlap Ratio 25% 50%

1-D Birth [mm] 0.0405 0.01916

a [mm] 0.03917 0.01897

Percent Difference 3.396% 1.014%

1-D Death [mm] 0.1452 0.06480

σ [mm] 0.1459 0.0653

Percent Difference 0.533% 0.788%

3.1.7 Appendix — Score Noise Study

3.1.7.1 Feature Depth
A noise study was conducted on the feature depth score by generating a synthetic texture using a

superposition of two-dimensional Gaussian distributions in a four by four grid as the features. The
synthetic surface is shown in Fig. 3.25 (a). Gaussian noise was added to this image by specifying
an amplitude on a normal distribution and comparing this amplitude to the nominal strike depth
(1) to generate a signal to noise ratio (SNR) in dB. The depth score was then computed and plotted
over a range of SNRs to quantify the noise robustness of the score. Ten trials were conducted at
each SNR with the average score plotted with error bars indicating one standard deviation from the
mean. The resulting plot for the depth score is shown in Fig. 3.25 (a). We see that the depth score
remains within 5% of the nominal score (100%) for SNRs down to approximately 25 dB.

(a) Depth (b) Roundness

Figure 3.25 Texture quantification scores plotted as a function of the SNR in dB. The average
score of 10 trials is plotted as a solid line and the dashed line indicates the true score of the feature
depths. Error bars are shown at one standard deviation of the 10 trials at each SNR.

99

3.1.7.2 Feature Roundness
The roundness score was then computed with varying SNR in the synthetic surface using same

process and synthetic surface. Ten trials were conducted for each SNR and the average roundness
score was plotted as a function of SNR with error bars indicating one standard deviation from the
average shown in Fig. 3.25 (b). We see that the roundness score remains within 5% of the nominal
score down to approximately 30 dB. It is also clear that the variability in the roundness score is
smaller compared to the depth score. This was likely due to each roundness score being made up of
30 earth movers distance computations which reduces the effect of outliers because a single outlier
in the earth movers distance plot will not have a significant effect on the area under the curve.

3.1.8 Appendix — Estimating Surface Slope and Angularity
During the PVST process, the tool is set to strike the same depth for each cycle. If the sample

surface is not perfectly flat relative to the CNC datum, the strike depths will vary across the surface.
We see in Fig. 3.11 (c) that the strikes toward the bottom right of the image are deeper in general
compared to the opposite corner due to the larger birth times in the top left corner. As a result, we
expect that the surface is sloped toward the bottom right corner and we can approximate this slope
by fitting a regression plane to the point cloud shown in Fig. 3.11 (c). For this image, the resulting
plane has the form,

z = 0.1508−0.0003315ix −0.0001764iy (3.26)

where ix and iy are the pixel indices in the x and y directions respectively and z is the height in the
image. The slope coefficients on the ix and iy terms have units of 1

pixel due to the normalization of

the depths in the image. The slopes can be converted to units of µm
mm using the maximum depth of

the image in microns, the width of the image in millimeters and the number of pixels along one axis
in the image. The resulting slopes are, mx =−0.941 and my =−0.501 µm

mm . In other words, for each
millimeter increase in the horizontal direction in this image, we expect the strike depth to increase
by about 0.941 microns, This increase corresponds with the top of the surface in this location
being closer to the CNC tool. This means that the sample is sloped in the opposite directions.
These slopes helped explain why the observed strike depths are deeper toward the bottom right
corner of the image and why the image thresholding cannot provide an ideal quantification of the
roundness of the strikes and persistence diagram filtering needed to be used to get an optimal
reference height. The slopes for the 25 and 50% overlap images are shown in Table 3.7. Note that
the image coordinate system was used for these slopes so the negative y direction points toward
the top of the image.

Table 3.7 Measured Radius at Half Nominal Depth

Direction mx [µm/mm] my [µm/mm]

0% Overlap −0.941 −0.501

25% Overlap −1.211 −2.307

50% Overlap −0.832 −0.475

100

3.2 Characterizing Pattern Shape
Surface texture influences wear and tribological properties of manufactured parts, and it plays

a critical role in end-user products. Therefore, quantifying the order or structure of a manufactured
surface provides important information on the quality and life expectancy of the product. Although
texture can be intentionally introduced to enhance aesthetics or to satisfy a design function, some-
times it is an inevitable byproduct of surface treatment processes such as Piezo Vibration Striking
Treatment (PVST). Measures of order for surfaces have been characterized using statistical, spec-
tral, and geometric approaches. For nearly hexagonal lattices, topological tools have also been
used to measure the surface order. This paper utilizes tools from Topological Data Analysis for
quantifying the impact centers’ pattern in PVST. We compute measures of order based on optical
digital microscope images of surfaces treated using PVST. These measures are applied to the grid
obtained from estimating the centers of tool impacts, and they quantify the grid’s deviations from
the nominal one. Our results show that TDA provides a convenient framework for the character-
ization of pattern type that bypasses some limitations of existing tools such as difficult manual
processing of the data and the need for an expert user to analyze and interpret the surface images.

3.2.1 Introduction
One of the main objectives of the manufacturing enterprise is to achieve products that satisfy a

preset quality under the constraints of time, cost, and available machines [226]. A key quality in
manufacturing is the surface texture which is directly related to surface roughness [227–229] and to
the tactile feel of the resulting products which is quantified by tactile roughness [230,231]. Surface
texture can be either intentionally introduced to satisfy functional or aesthetic surface properties,
or it can be a byproduct of a specific manufacturing setting. However, the importance of surface
texture goes beyond merely the aesthetics since the resulting surface properties have a strong in-
fluence on ease of assembly, wear, lubrication, corrosion [175], and fatigue resistance [176–178].

An example of a process where surface texture is introduced in order to both enhance the
mechanical properties of the part and as an inevitable byproduct is the Piezo Vibration Striking
Treatment (PVST) [214]. In PVST, a tool is used to impact the surface and a scanning strategy
is applied to treat the whole surface, see Fig. 3.26. Depending on the impact depth and speeds
set for the process, various grid sizes and diameters can be obtained. By varying parameters such
as the scanning speed and the overlap of the impacts, a texture inevitably is left behind on the
surface. While this can be leveraged to both treat and texture the surface, the resulting pattern
can also provide invaluable information about the success of the treatment such as quantifying
missed or misplaced impact events. Further, the texture can also be utilized to assess the quality of
the machined surface through comparing the resulting pattern with the nominal or desired pattern.
Specifically, if the resulting pattern is missing too many features (indentations), this can be an
indication of large deviation of material distribution on the surface. Detecting such events can
signal the need for further finishing, or for adjusting the manufacturing process to enhance the
resulting surfaces.

While there are several classical tools for quantifying surface texture [232], one limitation of
these methods is their strong reliance on the user for tuning the needed parameters. For example,
a common pre-requisite for these tools is knowing the relative pixel intensity in the image and
which threshold size for removing objects from the image will result in a successful texture seg-
mentation. An emerging tool that has shown promise for quantifying texture is from the field of

101

(d)

Figure 3.26 Schematics of PVST: (a) PVST; (b) Striking process in PVST; (c) Overlap of
indentations; (d) Grid geometry. PVST nominal grid for (d1) x and y overlap dx = dy = 0, and d2)
for x overlap dx ≥ 0 and y overlap dy ≥ 0. The striking tool diameter is D, and the figure shows a
scanning strategy where the x and y scanning speeds are set to obtain a certain overlap ratio.
When the overlap in x and y is the same, we write dx = dy = ds.

Topological Data Analysis (TDA). More specifically, topological measures were used to quantify
order of nearly hexagonal lattices [219] which represent nanoscale pattern formation on a solid
surface that can result from broad ion beam erosion [233]. The input data in [219] was the loca-
tion of the nanodots on the surface, which is an input data type often referred to as a point cloud.
Topological measures were shown to be more sensitive than traditional tools, and they can provide
insight into the generating manufacturing process by examining the resulting surfaces.

This paper explores utilizing topological measures for quantifying the surface texture produced
by PVST. Specifically, the goal of this paper is to use topological methods to quantify lattice
types in a PVST image, which can provide insight into the effectiveness of the PVST process.
While we use measures inspired by those utilized on point clouds, i.e., point locations in the plane,
in [219], the data in our work are images of the resulting surface obtained using KEYENCE Digital
Microscope. Therefore, in our setting we need to process the data to extract the PVST indentation
centers in order to quantify the resulting pattern. Our exploratory results show possible advantages
to our approach including automation potential in contrast to standard tools where intensive user-
input is required.

The paper is organized as follows. Section 3.2.2 provides background for PVST. Section 3.2.3
explains the experimental setup and how the experimental data is collected. Section 3.2.4 outlines
the processing performed on each image to obtain the point cloud data. Section 3.2.5 discusses the
TDA-based approach proposed in this study. Section 3.2.6 compares the results of the analysis to
a perfect square lattice. Section 3.2.9 includes the concluding remarks.

3.2.2 Piezo Vibration Striking Treatment
Mechanical surface treatment uses plastic deformation to improve surface attributes of metal

components, such as surface finish, hardness, and residual stress, which is an effective and eco-
nomical way of enhancing the mechanical properties of engineering components. Among various
mechanical surface treatment processes, i.e., Shot Peening [234], Surface Mechanical Attrition
Treatment [235], High-frequency Mechanical Impact Treatment [236], and Ultrasonic Nanocrystal
Surface Modification [237], PVST is a novel mechanical surface treatment process that is realized
by a piezo stack actuated vibration device integrated onto a computer numerical control (CNC)
machine to impose tool strikes on the surface. Different from those processes, the non-resonant
mode piezo vibration in PVST and the integration with CNC machine enable PVST to control the

102

process more conveniently and precisely as demonstrated in previous applications in modulation-
assisted turning and drilling processes [238,239]. The schematics of PVST are shown in Fig. 3.26.
The device is connected to the spindle of a CNC mill through a tool holder. The spindle can only
move along the Z direction to control the distance between striking tool and workpiece surface.
The motion of the machine table along the X or Y directions defines specific striking locations on
the workpiece mounted on the table. As shown in Fig. 3.26a, the piezo stack actuator is connected
with a spline shaft that is part of the ball spline bearing, both of which are fixed in the device body.
The actuator drives the shaft to move along the Z direction, but no bending or rotation is allowed.
The striking tool is rigidly connected to the shaft through a holder. The power generator and am-
plifier produce amplified driving voltage to extend and contract the actuator and hence actuate the
tool to oscillate along the axial direction. A capacitance probe clamped onto the device body and a
dynamometer plate mounted on the machine table are used to measure the displacement of the tool
and the force during the treatment. Both the force and displacement are recorded synchronously
in a data acquisition system. The lower bound and upper bound of the driving voltage are set as
zero and peak-to-peak amplitude Vpp of the voltage oscillation, which can control the frequency
and amplitude of the tool vibration to generate different surface textures. The initial position of the
tool Z can be used to control the distance between the tool and the workpiece surface and hence
change the striking depth to produce different surface textures as well. As shown in Fig. 3.26b-d,
the successive strikes controlled by scan speed vs will be imposed on different locations of the
surface along the tool scan path. The offset distance ds between two successive strikes and the di-
ameter of the indentation can be utilized to compute the overlap ratio. Different overlap ratios can
generate various surface textures, namely higher overlap ratio leads to a denser distribution of the
indentations. This paper focuses on the low overlap ratio images produced using PVST to detect
the center points of the circles in the image and quantitatively determine the lattice type present in
the texture with minimal user input.

Figure 3.27 Various surface textures under different PVST conditions: (a) initial workpiece
surface; (b) — (d) different Z values; (e) — (h) different overlap ratios; (i) — (l) different driving
voltages.

103

3.2.3 Experimental Procedure
A mild steel ASTM A572GR50 workpiece with a dimension of 120 mm × 40 mm × 20 mm is

used for surface texture data collection under various PVST conditions (see Tab. 3.8).

Table 3.8 Various PVST conditions. The first column represents the samples in Fig. 3.27.

No. f (Hz) Vpp (V) d (mm) ro Z (µm)
b-d 100 120 3 0.75 0,10,20
e-h 100 120 3 0, 0.25, 0

0.5, 0.75
i-l 100 60, 90, 3 0.75 0

120, 150

The treated area for each condition is 5 mm × 5 mm. Only a size of 2.5 mm × 2.5 mm is
used for surface texture data collection due to the duplicate characteristic of the surface texture
throughout the treated area and the computation efficiency for data processing. The selected area
is fixed at the upper left corner of the treated area for consistent data collection. The workpiece is
placed on a free-angle XY Z motorized observation system (VHX-S650E), and 3D surface profiles
are characterized using KEYENCE Digital Microscope (VHX6000), as shown in Fig. 3.28a. A
real zoom lens (KEYENCE VH-Z500R, RZ x500 — x5000) and x1000 magnification are utilized
to achieve sufficient spatial resolution (0.21 µm). Since each capture under this magnification can
only cover a small area, the stitching technique (22×22 scans in horizontal and vertical directions)
is employed to achieve sufficient capture field. Fig. 3.28b shows one of the captured 3D profiles
under two different types of illustrations (texture and surface height map). The scanned surface
textures after different PVST conditions are shown in Fig. 3.27. Note that for this paper, images
e, f, and g were the main focus because they allow extracting the indentation centers. The centers
in the remaining images are not easily identifiable, and they require tools from image analysis that
are beyond the scope of this paper.

Figure 3.28 (a) KEYENCE digital microscope (b) illustrations of scanned surface texture.

3.2.4 Data Preprocessing
In this section, we explain how we preprocess the data set. The raw images obtained from the

microscope have dimension of nearly 12000×12000. However, there are black pixels around the
edges of each image. We removed these pixels such that all raw images have a final dimension of
12000×12000 taken from the center of the corresponding raw image. This significantly reduced
the number of black pixels in the retained images. Each image was then converted to grayscale as
shown in Fig. 3.29.

104

3.2.4.1 Image Cropping:
Because the methods used to detect the lattice type depend on the number of points in each

image, the images needed to be cropped in such a way that nominally, the same number of centers
were obtained each time [219]. This was accomplished by using the speed and frequency from
the PVST process to compute the expected number of pixels per circle. The highest speed was
used to set an upper bound on the number of points per image, and this was held constant among
the images. This information was then used to compute the pixel dimensions required to obtain a
specified grid in each image and the images were cropped accordingly.

3.2.4.2 Nominal Grid:
The PVST process parameters that were used to generate the surface in each image were then

used to plot a nominal (expected) grid on top of the actual image to visualize the difference between
the nominal and the resulting grids. The nominal grid was created by first placing a datum point
on top of the experimentally found center at the upper left center in the image, then computing
the locations of the other points based on the nominal process parameters. An example plot of the
nominal grid for the 0% overlap ratio image is shown in Fig. 3.30 as the red triangles. It is clear
that the nominal grid is not aligned with the true grid as evidenced by the slight shifts in the rows
which causes a change in the lattice type.

3.2.4.3 True Grid:
To quantify the grid resulting from the PVST treatment, the center points of the tool indenta-

tions need to be located. This was accomplished by applying a region growing algorithm starting
from a manually selected point near the center of the circle to detect a bounding polygon. The
centroid of the generated bounding polygon was then used as an estimate of the center location
as shown in Fig. 3.30. The reason for manually choosing a guess for the centers’ locations, in-
stead of using the nominal locations, is shown in Fig. 3.28b. The figure shows that although the
overlap was selected to be equal in the horizontal and the vertical direction, the columns are more
widely spaced in the horizontal direction. We hypothesize that this is the result of the CNC motion
whose acceleration is more smoothly varied in the direction of the scan (the vertical direction in the
Fig. 3.28b) thus producing more precise impact locations in that direction. In contrast, we suspect
that the rapid positioning motions of the CNC when moving to the next column in Fig. 3.28b are
creating a drift in the center locations along that column that propagates every time a new column
is treated which leads to incrementally shifting the whole pattern in the horizontal direction.

Figure 3.29 Preprocessing of a sample raw image.

105

Figure 3.30 Locating Nominal and True Lattice Centers

3.2.5 Topological Data Analysis Based Approach
In this section, we give a brief description of persistent homology, a tool from Topological Data

Analysis (TDA), specifically as it applies to point clouds since that is what we use to characterize
the PVST grid. We refer the interested reader to more in-depth treatment of TDA in [13,15,17,18,
240, 241].

We then summarize the information extracted from images in persistence diagrams, and we use
the latter to score the PVST-treated surfaces.

3.2.5.1 Persistent homology
Persistent homology, or persistence, is a tool from TDA for extracting geometric features of a

point cloud such as the connectivity or the number of holes in the space as a function of a connec-
tivity parameter. Specifically, consider the point cloud shown in Fig. 3.31a which represent points
in an almost prefect square lattice but with three perturbed points. Suppose that we start expanding
disks of diameter d around each of the points, and we monitor changes in the connectivity of the
components as d is increased.

We define connectivity using the Euclidean distance in the plane between each point in the set.
Specifically, we connect two vertices via an edge if their Euclidean distance is at least equal to the
connectivity parameter d. While Fig. 3.31a shows that for d = 0 we have 36 distinct components
that emerge or are born, Fig. 3.31b demonstrates that some of these components begin to merge
or die at d = d1. When d = d2, the square edges connect which creates holes at the center of each
square and two larger holes where the perturbations are present. Note that the third perturbation in
the corner remains disconnected at this point. Once the connectivity parameter reaches d3, all of
the components remain connected as d → ∞. The difference between the death value and the birth
value for any component is called its the lifetime.

We can summarize the connectivity information using the zero-dimensional (0D) persistence
diagram shown in Fig. 3.31f (blue). The coordinates of points in this diagram are the (birth, death)
values of the connectivity parameter where the number of connected components changes. This
diagram shows that four of the components die when d = d1 and 30 more connect at d = d2 with
the remaining point joining at d3. These quantities are represented in the histogram shown with
the persistence diagram.

Moreover, Fig. 3.31 shows that the grid has interesting geometric features characterized by

106

Figure 3.31 Persistence Example

the emergence and disappearance of holes in the plane as d is varied. Persistence can also track
the birth and death of these holes via one-dimensional (1D) persistence. In order to track holes,
for each value of d we construct a geometric object that includes the vertices themselves, pairs of
points (edges) that are connected at d, and the 3-tuples that represent faces (geometrically, they are
triangles) which get added whenever all their bounding edges are connected. The geometric objects
constructed this way are called simplicial complexes, and varying d leads to a growing sequence of
them indexed by the single parameter d. For example, Fig. 3.31f (red) shows that at d = 0 only the
vertices are included in the corresponding simplicial complex, and we have no holes. Increasing
d to d1 in Fig. 3.31b, edges are included between points whose Euclidean distance is less than or
equal to d. We also fill in or include in the simplicial complex any triangles whose bounding edges
all are included. This is shown in Fig. 3.31c where four triangles are added. At this point, when
d = d2, 18 loops were born that were not filled in immediately. As d is increased to d4, more holes
emerge and are filled at the same time. This process is continued until all of the components are
connected as one and no loops persist in the simplicial complex. The information related to the
birth and death of holes is summarized in the 1D persistence diagram shown in Fig. 3.31f. Notice
that two of the holes born at d2 are larger than the others causing them to have a longer lifetime
as d is varied. These larger holes are apparent in the persistence diagram with the largest vertical
distance to the diagonal.

The combination of the 0D and 1D persistence allows us to quantify the deviation of a given
grid from its nominal, perfectly ordered lattice. For example, in a PVST process we can compute
the 0D and 1D persistence of the resulting, actual grid by locating the centers of the tool on the
treated surface. We can then compare the actual persistence values to their nominal counterparts
where the latter are obtained by assuming a perfectly produced lattice with no defects or center
deviations. This allows us to quantify the proximity of the resulting grid to the commanded grid,
and gives us a tool to characterize the defects during the PVST treatment process such as misplaced
or missed strikes that alter the expected pattern.

107

3.2.5.2 TDA-based scores:
We focus on 0D (H0) and 1D (H1) persistence to obtain scores for texture analysis. In order to

quantify the type of the pattern on a PVST-treated surface, a method is needed for scoring different
lattices. To achieve this, point cloud persistent homology was applied to a perfect square lattice,
and expressions were obtained to be used for comparison with the persistence outputs from the
actual surfaces. Comparing the results from a perfect lattice to the true surface of interest allows
for conclusions to be drawn about the type of lattice present due to PVST. To correctly compare
the results from multiple images, the same number of points must be chosen in each case and the
square regions containing these points must be similarly scaled, e.g., to [-1,1]×[-1,1]. Otherwise,
the comparisons become less meaningful because mismatched sample scaling or different number
of points in each sample will strongly influence the resulting scores.

0-D Persistence: To compute the H0 persistence of a perfect square lattice, a Vietoris–Rips com-
plex was applied to a perfect square lattice with an n× n grid of points in Fig. 3.32 and the con-
nectivity parameter d was varied until the all of the rectangles were included in the complex.

Figure 3.32 An illustration of the key values of the diameter d at which features are born and die
for a perfect Square Lattice. The expanding disks (purple) are only shown for four points to better
visualize the edges and the triangles that get added at each shown d value.

For the H0 persistence, points were born at d = 0 and died at d = 2
n−1 where d is the diameter

of the expanding balls. For 0D persistence of this lattice, all of the elements are born and die at the
same time. It was shown in [219] that for both perfect square and perfect hexagonal lattices, the
variance in the 0D persistence (lifetimes) is zero, which we express as

Var(H0) = 0. (3.27)

This expression can be used for measuring the deviation from a square/hexagonal lattice in
the presence of a non-zero variance [219]. Note that the overlap ratios for the PVST images are
accounted for when the nominal distance between points is computed using the in-plane speeds
and frequency to locate the centroids of the circles. The theoretical persistence diagram for the
0-D persistence was generated as shown in Fig. 3.33.

Where n2−1 components are born at 0 and die at 2
n−1 , and one object survives for all time. The

H0 variance was determined to have a maximum value of 1
4 over all possible lattice types [219] so

to normalize this measure, it was multiplied by a factor of 4.

108

Figure 3.33 Theoretical Persistence Diagram for a perfect square lattice.

1-D Persistence For the 1-D persistence in a Vietoris–Rips complex, the presence of loops is of
interest. Figure 3.32 shows that all of the loops are born at d = 2

n−1 and die at d = 2
√

2
n−1 giving the

following lifetime for each individual loop

H1 =
2
√

2
n−1

− 2
n−1

. (3.28)

If the grid of interest is n×n points, the total number of loops k present for a perfect rectangular
lattice is k = (n−1)2. The loop lifetimes provide insight into the density of the lattice in the image
as a higher point density would have smaller loops. To incorporate all of the loop lifetimes into
one measure, the sum of all individual lifetimes is computed. For a perfect lattice, the sum can
be multiplied by the number of loops because in a perfect lattice all of the loops have the same
lifetime. Therefore, Eq. (3.29) can be used to quantify the type of lattice in the image where it is a
maximum value for a square lattice and 0 for a hexagonal lattice [219].

∑H1 = 2(
√

2−1)(n−1). (3.29)

The 1-D persistence diagram for the rectangular lattice is shown in Fig. 3.33. For the perfect
lattice, k loops are born at 2

n−1 and die at 2
√

2
n−1 . If the H1 lifetimes are smaller than the perfect

lattice lifetime, this would indicate the presence of shifts in the lattice type (i.e., some of the
points are shifted allowing some of the loops to prematurely close). It has been shown that this
measure is equal to zero for a perfect hexagonal lattice and achieves a maximum value for a square
lattice [219]. In our case, the normalization factor was a function of the number of points in a row
or column of the grid as shown previously. For this reason, the sum of 1D persistence lifetimes
was divided by the expression shown in Eq. (3.29). Because the H1 sum is nonzero for a square
lattice, the CPH score approach presented in [219] for hexagonal lattices cannot be used due to
the underlying nominal lattice being square, and a square lattice cannot be detected with a single
measure of order. Together, the H0 and H1 measures were used to provide scores for classifying the
type of lattice. For example, if both scores are close to zero the lattice is mostly hexagonal. If the
H1 sum is close to 1 and the H0 variance is small, the lattice is mostly square and if both measures
are close to one the lattice is neither square nor hexagonal. Expressions for the computed scores
used with the PVST centers point clouds are given by

shown in equations (3.30a) and (3.30b).

H0 = 4Var(H0), (3.30a)

109

H1 =
1

2(
√

2−1)(n−1)
ΣH1, (3.30b)

where H0 is the normalized 0-D persistence score, and H1 is the normalized 1-D persistence score.
These scores were used to detect the presence of square and hexagonal lattices in the PVST images
and quantify the relative magnitudes of each type.

3.2.6 Results
Point cloud persistence was applied to the nominal and actual grids from the PVST images

and the corresponding persistence diagrams and histograms were generated. The scores from
Section 3.2.5.2 were then used with the computed statistics from the persistence output to quantify
the lattice types.

(a) Nominal Grid Persistence Diagram. (b) True Persistence Diagram 0% Overlap.

(c) True Persistence Diagram 25% Overlap. (d) True Persistence Diagram 50% Overlap.

Figure 3.34 The resulting persistence diagrams and the corresponding histograms for (a) a
nominal grid, (b) PVST with 0% overlap, (c) PVST with 25% overlap, (d) PVST with 50%
overlap.

3.2.7 Persistence Diagrams
The generated point clouds from Section 3.2.4 were passed into Ripser, a python library used

to generate persistence diagrams from point cloud data with a Vietoris-Rips Complex [242]. First,
nominally generated grid point clouds were passed to Ripser to verify the expressions obtained
in Section 3.2.5.2. The same persistence diagram resulted for all three of the grids shown in
Fig. 3.34a, because the data was scaled to the same region. Histograms were plotted beside the
persistence diagrams to illustrate repeated points in the diagram. We see that the 0D persistence
pairs have a birth time of 0 and a death time at 0.5 which is consistent with the predicted results
from Fig. 3.32 when n = 5. We then plotted the persistence diagrams for the actual grids obtained
from the region growing algorithm. These persistence diagrams are shown in Fig. 3.34b—d. It
was clear from the 0% overlap ratio image, the point density was larger than expected which was

110

captured by the 1D persistence diagram loops having a lower lifetime as a result of the centers
being closer together in this image. The 0D persistence pairs in the 0% overlap image appear
to have a significantly larger spread when compared to the other overlap ratio results. This was
likely due to some of the rows shifting into a hexagonal lattice causing some of the components to
connect before they would if the lattice were square.

3.2.8 Measures of Order
Equations (3.30a) and (3.30b) were used to compute measures of order based on the experi-

mental persistence information generated from the point clouds. The computed measures of order
for each image are shown in Table 3.9. The H0 scores were all significantly smaller than 1 indi-
cating that all of the PVST tests considered in this paper produced lattices that were somewhere
between square and hexagonal. With the information from the 0D persistence score, the H1 score
allows for the lattice type to be located on the lattice figures in [219] showing that the 0% overlap
ratio image was the closest to a hexagonal lattice with the larger overlap images corresponding
to images closer to square relative to the first image. It should be noted that all of the H1 scores
were below 0.5 which meant that the resulting lattices were predominantly closer to hexagonal
than square. Another way to interpret this measure is to treat it as a percentage of square lattice
present in the image for H0 ≈ 0. With this interpretation, the images had 31.4%, 37.9% and 44.1%
square lattice respectively with the remaining proportion being hexagonal.

Table 3.9 Measures of Order for the experimental data.

Image 0% Overlap 25% Overlap 50% Overlap
H0 2.29e−3 0.405e−3 0.337e−3
H1 0.314 0.379 0.441

3.2.9 Conclusion
Topological approaches were applied to characterizing texture of images obtained from PVST-

treated surfaces to determine the underlying lattice type. Our exploratory results show that using
TDA for surface texture characterization can be beneficial for quantifying the lattice shape ob-
tained from a PVST sample. Scores used in this paper allowed for direct quantification of the
proportions of different lattice types present in a PVST surface which agreed with the qualitative
examination of the images. The information gained from applying this analysis removes ambiguity
in determining the true lattice shape and can be used for gaining insight into process control, and
gauging improvement in the regularity of the PVST process.

The authors plan to continue work on this topic in the future to further automate the process
for detecting the true PVST centers. Future work also includes expanding the analysis of PVST
surfaces through quantifying the roundness of the resulting tool indentations at different level sets,
and examining the consistency of the the striking depths.

111

CHAPTER 4

MODELING
This chapter presents my work on a time delay model for metabolic oscillations in yeast cells
published in [10]. When cells are starved of resources, it has been observed experimentally that
the protein production rates will oscillate in approximately 40 minute intervals. I developed a time
delay framework for modeling metabolic oscillations in yeast cells and analyzed the model using
three numerical approaches to find parameters that resulted in a limit cycle. I also extended the
model to include three coupled proteins and used the same methods for analysis.

4.1 A Nonlinear Delay Model for Metabolic Oscillations in Yeast Cells
We introduce two time-delay models of metabolic oscillations in yeast cells. Our model tests

a hypothesis that the oscillations occur as multiple pathways share a limited resource which we
equate to the number of available ribosomes. We initially explore a single-protein model with a
constraint equation governing the total resource available to the cell. The model is then extended
to include three proteins that share a resource pool. Three approaches are considered at constant
delay to numerically detect oscillations. First, we use a spectral element method to approximate the
system as a discrete map and evaluate the stability of the linearized system about its equilibria by
examining its eigenvalues. For the second method, we plot amplitudes of the simulation trajectories
in 2D projections of the parameter space. We use a history function that is consistent with published
experimental results to obtain metabolic oscillations. Finally, the spectral element method is used
to convert the system to a boundary value problem whose solutions correspond to approximate
periodic solutions of the system. Our results show that certain combinations of total resource
available and the time delay, lead to oscillations. We observe that an oscillation region in the
parameter space is between regions admitting steady states that correspond to zero and constant
production. Similar behavior is found with the three-protein model where all proteins require
the same production time. However, a shift in the protein production rates peaks occurs for low
available resource suggesting that our model captures the shared resource pool dynamics.

4.1.1 Introduction
Cellular processes often exhibit non-trivial temporal dynamics in the absence of the external

stimulus. Most common is the cell division cycle. However, as observed more than 50 years
ago [243], yeast populations in low growth conditions exhibit metabolic cycling (MC) [244, 245]
also known as respiratory cycling [246]. While traditionally described as a result of carbon limita-
tion, limitations by other essential nutrients like phosphate [247] or ammonium, ethanol, glucose,
and sulfur [248,249] can lead to MC also known as metabolic oscillations. Under the growth con-
ditions commonly used in this system, the population doubling time and thus the length of the cell
division cycle is about 8 h, and the metabolic oscillations have period 40−44 min [250].

The oscillations were first observed as periodic oscillations in the oxygen consumption of con-
tinuous, glucose-limited cultures growing in a chemostat, but were later also observed in batch
cultures [251]. The MC has two distinct phases: low oxygen consumption (LOC) phase when
dissolved oxygen in the medium is high and high oxygen consumption phase (HOC) when the
oxygen in the medium drops to low levels [244, 245, 250]. Using experimental techniques ranging
from micorarray analysis [244,250] to short-life luciferase fluorescent reporters [246], researchers

112

were able to assign transcription of particular genes to these phases. During the LOC phase the
yeast culture performs oxidative metabolism focused on amino-acid and ribosome synthesis, while
during the HOC phase reductive reactions including DNA replication and proteosome related re-
actions occur [244]. Cellular metabolism during the reductive HOC phase seems to be devoted
to the production of acetyl-CoA, preparing cells for the upcoming oxidative phase, during which
metabolism shifts to respiration as accumulated acetyl-CoA units for ATP production via the TCA
cycle and the electron transport chain [244].

This compartmentalization of cellular processes in time is thought to be related to help assem-
bly of macro-molecular complexes from units that, at low growth rates, are expressed at very low
levels. Expressing them at the same time helps ensure timely synthesis and avoids waste of limited
resources [245].

There were many different hypotheses centered on chemical signals that may mediate metabolic
synchrony. In particular, Murray et. al. [252] proposed acetaldehyde and sulphate, Henson [253]
and Sohn and Kuriyama [254] hydrogen sulphide, while Adams et. al. [255]found that Gts1 protein
plays a key stabilizing role. Finally, Muller at. al. [256] suggest a signalling agent, cAMP, plays a
major role in mediating the integration of energy metabolism and cell cycle progression.

Several mathematical models that do not specify the synchronizing chemical agent, but explore
a general idea that cells in one phase of a cell cycle can slow down, or speed up progression of
other cells through a different phase, have been suggested [257,258]. Finally, paper [259] explores
synchronization which is a result of criticality of necessary cellular resources combined with the
engagement of a cell cycle checkpoint, when these resources dip below the required level.

In this paper we explore the hypothesis that oscillations may arise spontaneously when several
cellular processes share a limited resource. This does not explain why the processes separate into
oxidative and reductive phase but argues that compartmentalization in time may help utilize lim-
ited resources more efficiently. Ribosomes are essential cellular resources as they produce enzymes
used in all metabolic processes as well as all other proteins including those used to assemble ribo-
somes themselves. Yeast ribosomes are large molecular machines consisting of 79 proteins [260]
and therefore they require substantial investment of cellular resources. This is reflected in the ob-
servation that the ratio of ribosomal proteins to all proteins scales linearly with cell growth rate
across metabolic conditions [261]. For this reason in our model we equate the limited shared
cellular resource to the number of available ribosomes.

In many biological systems, time delays are often incorporated into the models because many of
these processes have nontrivial time spans that dictate the overall system behavior [262–269]. For
this reason, the time delay framework is ideal for modeling a metabolic process where the protein
production times can take upwards of 40 minutes. We aim to model the protein synthesis process
in yeast cells using time delays and explore under what conditions oscillations are present in the
responses. This paper is structured as follows. In Section 4.1.2 we introduce a single protein model
and extract theoretical results such as the fixed points and its linear stability behavior. Section 4.1.3
presents the three protein extension to the single protein model and the equilibrium conditions are
derived along with the system linearization. We then show the numerical methods that are utilized
on the models in Section 4.1.4 where we describe the spectral element linear stability method,
response feature analysis of system simulations under low growth conditions, and boundary value
problem computation of periodic solutions to the nonlinear systems from simulation data. Results
for the single protein system are then presented in Section 4.1.5 where the numerical methods are
applied and the stability of the system is characterized in a subset of the overall parameter space.

113

We then apply the same methods to the three protein system in Section 4.1.6. Finally, we give
concluding remarks in Section 4.1.7.

4.1.2 Theory — Single Protein

4.1.2.1 Model Derivation
Both transcription and translation involve processing molecules (RNAP, ribosomes) that are se-

questered during the time of processing. These processing molecules constitute cellular resources
that need to be shared by all necessary protein production processes. We will concentrate here
on ribosomes, as their concentration is known to be tightly correlated with the microbial growth
rate [261]. The rate of production of protein p(t) is proportional to the rate of initiation µ at some
time t − τ(t) in the past when the processing started

ṗ(t) = Bµ(t − τ)−Dp(t), (4.1)

with the maximal growth rate B and the decay rate D. The rate of initiation µ(t) is a product of the
activator (which we assume for simplicity is the protein p itself) and the ribosome R:

µ(t) = f (p(t))R(t), (4.2)

with Hill function

f (t) =
pn(t)

κn + pn(t)
.

A suggestion for the sequestration equation based on [270] is given by

R(t) = RT −A
∫ t

t−τ

µ(s)ds, (4.3)

where RT is the total resource (ribosomes) and the integral is the resource which is currently being
sequestered to produce a protein. Differentiation of Eq. (4.3) leads to

Ṙ(t) = A(µ(t − τ)−µ(t)) . (4.4)

We note that this differentiation step is only valid for constant delays and if variable delays are
used, Eq. (4.3) must be used for analysis. Putting the equations together, we have the model

ṗ(t) = B f (p(t − τ))R(t − τ)−Dp(t),
Ṙ(t) = A(f (p(t − τ))R(t − τ)− f (p(t))R(t)) .

(4.5)

The constant total resource RT is the sum of R(t) and the integral over the history of µ(s) from
s = t − τ(t) to s = t. This means that the initial functions for p(θ) and R(θ) with θ ∈ [−τ(0),0]
specify the value RT .

4.1.2.2 Equilibrium Points
Equilibrium conditions of the system can be obtained by setting p(t) = p(t − τ) = p∗, R(t) =

R(t − τ) = R∗, ṗ(t) = 0, Ṙ(t) = 0 in Eq. (4.5). This process yields one equilibrium condition
(Eq. (4.6)) because the equation for Ṙ(t) in Eq. (4.5) is satisfied for all constant p and R.

114

Dp∗ = B f (p∗)R∗ (4.6)

The other equilibrium conditions are obtained from Eq. (4.3) by assuming that the integrand is
constant when equilibrium has been reached. This yields Eq. (4.7).

R∗ =
RT

1+Aτ f (p∗)
(4.7)

We then substitute Eq. (4.7) into Eq. (4.6) to obtain,

p∗ =
B f (p∗)RT

D(1+Aτ f (p∗))
. (4.8)

Finally, inserting the definition of f (p∗), we get a polynomial expression that must be satisfied for
the equilibrium points as shown in Eq. (4.9).

(1+Aτ)p∗n+1 − BRT

D
p∗n +κ

n p∗ = 0 (4.9)

Any solution to Eq. (4.9) can then be plugged in to Eq. (4.7) to obtain the equilibrium solutions.
Note that this polynomial does not have analytical solutions for all values of n, but there is always
one trivial equilibrium solution at (p∗,R∗) = (0,RT). The nontrivial equilibrium points are then
obtained from solving the following system for (p∗,R∗).

(1+Aτ)p∗n − BRT

D
p∗n−1 +κ

n = 0, (4.10a)

R∗ =
RT

1+Aτ f (p∗)
. (4.10b)

Once the trivial solution is removed from the conditions, the remaining polynomial in p∗ has
either 0 or 2 positive real roots by Descartes’ rule of signs for every n ∈ Z+ assuming only
positive parameters are chosen. In conclusion, there is at least 1 trivial root at (0,RT) and at
most 3 equilibrium points including the trivial point where the other two points are the nontrivial
equilibria. We choose to restrict the analysis to n = 2 so that we can obtain analytical solutions for
the equilibrium points. Solving Eq. (4.9) for n = 2 yielded three equilibrium points:

(p∗,R∗) = (ptrivial,Rtrivial),

(p∗,R∗) = (pmiddle,Rmiddle),

(p∗,R∗) = (ptop,Rtop),

where,

115

ptrivial = 0,

Rtrivial = RT ,

pmiddle =
BRT −

√
B2R2

T −4D2κ2(Aτ +1)

2D(Aτ +1)
,

Rmiddle =
BRT

√
B2R2

T −4D2κ2(Aτ +1)−2AD2κ2τ(Aτ +1)−B2R2
T

B(Aτ +1)
(√

B2R2
T −4D2κ2(Aτ +1)−BRT

) ,

ptop =
BRT +

√
B2R2

T −4D2κ2(Aτ +1)

2D(Aτ +1)
,

Rtop =
BRT

√
B2R2

T −4D2κ2(Aτ +1)+2AD2κ2τ(Aτ +1)+B2R2
T

B(Aτ +1)
(√

B2R2
T −4D2κ2(Aτ +1)+BRT

) .

A,B,D,τ,κ, and RT are system parameters. Note that the second equilibrium point has a protein
production rate that is between the protein production rates of the other two equilibrium points.
Therefore, we refer to this equilibrium point as the “middle” equilibrium point and the point with
the largest p∗ as the “top” equilibrium point. By studying the stability of these three fixed points,
the stability of the system can be characterized for certain parameters.

To understand the role that each equilibrium point plays in the system, we need to understand
which equilibrium points are present in different regions of the parameter space. For this system,
we can compute the saddle node bifurcation by studying the curve where the argument in the
square root term becomes negative indicating that the top and middle equilibria are no longer real
numbers. This curve forms a boundary that separates the region with three equilibrium points and
the region with only the trivial equilibrium point. It can be computed analytically for this system
and is defined in terms of τ and RT as:

RT <

√
4D2κ2(1+Aτ)

B2 . (4.11)

This boundary given by the equality of Eq. (4.11) is plotted in the stability diagrams in Sec. 4.1.5
as a red curve with triangles. So any parameters that satisfy (4.11) only have a single equilibrium at
the trivial point, and if the parameters do not satisfy this inequality, the top and middle equilibrium
points are valid equilibrium solutions along with the trivial point.

4.1.2.3 System Linearization
In the analysis of nonlinear dynamical systems it is useful to study the associated linearized

system about the fixed points. The Hartman-Grobman theorem states that near a hyperbolic equi-
librium point, the linearized system exhibits the same behavior as the nonlinear system [43]. We
linearize (4.5) by computing the Jacobian matrices of the present and delayed states about an equi-
librium point q⃗ =

[
p∗ R∗]T . We start by defining two state space vectors, x⃗ and x⃗τ where,

116

x⃗ =
[

p(t)
R(t)

]
=

[
x1
x2

]
,

x⃗τ =

[
p(t − τ)
R(t − τ)

]
=

[
x1τ

x2τ

]
.

The nonlinear delay system can then be written in the form,

˙⃗x(t) = g⃗(⃗x, x⃗τ), (4.12)

where, g⃗ = g⃗1(⃗x)+ g⃗2(⃗xτ), g⃗1 =

[
−Dx1

−A f (x1)x2

]
, g⃗2 =

[
B f (x1τ)x2τ

A f (x1τ)x2τ

]
. In this form, the system is

written as a sum of a nonlinear component as a function of t and a nonlinear delay component as
a function of t − τ . We linearize each piece of g by computing the Jacobian matrix of the vector
functions.

G1 =
∂ g⃗1

∂x
=

[
∂ g⃗11
∂x1

∂ g⃗11
∂x2

∂ g⃗12
∂x1

∂ g⃗12
∂x2

]
=

[
−D 0

−A f ′(x1)x2 −A f (x1)

]
, (4.13)

and

G2 =
∂ g⃗2

∂xτ

=

[
∂ g⃗21
∂x1τ

∂ g⃗21
∂x2τ

∂ g⃗22
∂x1τ

∂ g⃗22
∂x2τ

]
=

[
B f ′(x1τ)x2τ B f (x1τ)
A f ′(x1τ)x2τ A f (x1τ)

]
, (4.14)

where f ′(x1τ) =
nκnxn−1

1τ

(κn+xn
1τ
)2 . The linearized system about an equilibrium q is then written as

˙⃗x ≈
[

−D 0
−A f ′(x1)x2 −A f (x1)

]∣∣∣∣
q
(⃗x− q⃗)+

[
B f ′(x1τ)x2τ B f (x1τ)
A f ′(x1τ)x2τ A f (x1τ)

]∣∣∣∣
q
(⃗xτ − q⃗). (4.15)

If a change of variables, y⃗ = x⃗ − q⃗ is implemented, with y⃗τ = x⃗τ − q⃗, Eq. (4.15) simplifies to
Eq. (4.16) effectively moving the equilibrium point to the origin.

˙⃗y ≈
[

−D 0
−A f ′(p∗)R∗ −A f (p∗)

]
y⃗+

[
B f ′(p∗)R∗ B f (p∗)
A f ′(p∗)R∗ A f (p∗)

]
y⃗τ . (4.16)

We can write Eq. (4.16) in a simplified form as,

˙⃗y ≈ G1(q)⃗y+G2(q)⃗yτ . (4.17)

We will use this linearized system to evaluate the stability of the equilibrium points of the system.
Note that Eq. (4.17) was derived only from the DDE system Eq. (4.5). In addition, the constraint
Eq. (4.3) must hold also for the perturbations. It is straightforward to directly compute the lin-
earized system about the trivial equilibrium. We do this by inserting (p∗,R∗) = (0,RT) into (4.17),
which leads to the elementary ODE system

˙⃗y ≈
[
−D 0
0 0

]
y⃗, (4.18)

117

because all elements of G2 become zero. This system has only two characteristic exponents that
are directly obtained from the diagonal of G1 as −D and 0. Since the original nonlinear DDE sys-
tem is infinite dimensional, there are infinitely many other characteristic exponents, which all tend
to −∞ as q⃗ →

[
0 RT

]T . Moreover, the characteristic exponent equal to zero corresponds to pertur-
bations of the resources R(t), which changes the value of the overall resources RT . However, such
perturbations do not fulfill the additional constraint equation (4.3), which means that this eigen-
value corresponds to the eigenvector along a one dimensional family of equilibria parameterized
by the total resource RT . As such this eigenvalue does not reflect the stability of the equilibrium
within a phase space with RT fixed. As a result, the trivial equilibrium point is a locally stable node
as long as the decay rate is positive (D > 0). We emphasize that using the Jacobian methods for
linearization at this step is valid for constant delays. For state-dependent delays or time-dependent
delays the system can be linearized using methods from [271].

4.1.3 Theory — Three Protein Model

4.1.3.1 Model
We extend the single protein model in Eq. (4.5) to incorporate production of three proteins with

shared resource i.e. a shared ribosomal pool. If the resources are shared, we expect that oscillations
may occur if there are not enough resources to produce all three proteins simultaneously. The
extended model is shown in Eq. (4.19).

ṗ1(t) = B1 f (p2(t − τ1)) f (p3(t − τ1))R(t − τ1)−D1 p1,

ṗ2(t) = B2 f (p1(t − τ2))R(t − τ2)−D2 p2,

ṗ3(t) = B3 f (p1(t − τ3))R(t − τ3)−D3 p3,

Ṙ(t) = A(µ1(t − τ1)+µ2(t − τ2)+µ2(t − τ3)−µ1(t)−2µ2(t)),

(4.19)

where A, B1, B2, B3, τ1, τ2, τ3, D1, D2, D3, are system parameters, µ1(t) = f (p2(t)) f (p3(t))R(t),
and µ2(t) = f (p1(t))R(t) and f (x) = xn

κn+xn . This means that production of the first protein is
activated when the other two protein production rates are nonzero and production of the second
and third proteins is activated by p1. Analogously to the single protein system, the total resource
(RT) is computed using,

(4.20)
RT = R(t) + A

(∫ t

t−τ1

f (p2(s)) f (p3(s))R(s)ds +
∫ t

t−τ2

f (p1(s))R(s)ds +∫ t

t−τ3

f (p1(s))R(s)ds
)
.

4.1.3.2 Equilibrium Points
The equilibrium conditions are found by first setting ṗ1 = ṗ2 = ṗ3 = 0 yielding the following

conditions:

D1 p∗1 = B1 f (p∗2) f (p∗3)R
∗,

D2 p∗2 = B2 f (p∗1)R
∗,

D3 p∗3 = B3 f (p∗1)R
∗,

(4.21)

118

where (p∗1, p∗2, p∗3,R∗) is the equilibrium point. Similarly to the single protein system, the Ṙ ex-
pression in Eq. (4.19) is always satisfied at equilibrium, but Eq. (4.20) yields the fourth and final
equilibrium condition:

RT = R∗+A [f (p∗2) f (p∗3)R
∗
τ1 + f (p∗1)R

∗(τ2 + τ3)] . (4.22)

This system has a trivial equilibrium at p∗1 = p∗2 = p∗3 = 0,R∗ = RT . For finding the other
equilibria, we need to solve this system of equations. We see that the relations in Eq. (4.21) all
depend directly on R∗. We eliminate R∗ by solving Eq. (4.22) for R∗,

R∗ =
RT

1+A
(

f (p∗2) f (p∗3)τ1 + f (p∗1)(τ2 + τ3)
) , (4.23)

and substituting R∗ in the three Eqs. (4.21), along with using the definition of f (x). These steps re-
sult in three multivariate polynomial equilibrium equations shown in Eqs. (4.24),(4.25) and (4.26).

(4.24)
D1 p∗1(κ

n + p∗n
1)(κn + p∗n

2)(κn + p∗n
3) + AD1 p∗1 p∗n

2 p∗n
3 (κn + p∗n

1)τ1

+ AD1 p∗(n+1)
1 (κn + p∗n

2)(κn + p∗n
3)(τ2 + τ3) = B1RT p∗n

2 p∗n
3 (κn + p∗n

1),

(4.25)D2 p∗2(κ
n + p∗n

1)(κn + p∗n
2)(κn + p∗n

3) + AD2 p∗(n+1)
2 p∗n

3 (κn + p∗n
1)τ1

+ AD2 p∗n
1 p∗2(κ

n + p∗n
2)(κn + p∗n

3)(τ2 + τ3) = B2RT p∗n
1 (κn + p∗n

2)(κn + p∗n
3),

(4.26)D3 p∗3(κ
n + p∗n

1)(κn + p∗n
2)(κn + p∗n

3) + AD3 p∗n
2 p∗(n+1)

3 (κn + p∗n
1)τ1

+ AD3 p∗n
1 p∗3(κ

n + p∗n
2)(κn + p∗n

3)(τ2 + τ3) = B3RT p∗n
1 (κn + p∗n

2)(κn + p∗n
3).

The solutions (p∗1, p∗2, p∗3) to these three equations correspond to the equilibrium point of the system
and the resource equilibrium is obtained by substituting these values in to Eq. (4.23). Due to the
complexity of these equations, we solve them numerically using the variable precision (VPA)
solver in Matlab [272]. Details for how these equations were solved are outlined in Sec. 4.1.6.

4.1.3.3 Three Protein System Linearization
The three protein system was also linearized about its equilibrium points for stability analysis

using the spectral element linear stability method described in section 4.1.4.1. We will linearize
the system about the equilibrium point, q⃗ =

[
p∗1 p∗2 p∗3 R∗]T from the solution to Eqs. (4.24),(4.25),

and (4.26). Similarly to the single protein model, we define state vectors for the current states and
delayed states, but in this case, three delayed states are present due to the system having multiple
time delays. The system states are,

x⃗ =

p1(t)
p2(t)
p3(t)
R(t)

=

x1
x2
x3
x4

 , x⃗τi =

p1(t − τi)
p2(t − τi)
p3(t − τi)
R(t − τi)

=

x1τi

x2τi

x3τi

x4τi

 , (4.27)

where i ∈ [1,2,3] represents the system state at delay τi. We then write the system as:

˙⃗x = g⃗(⃗x, x⃗τ1 , x⃗τ2, x⃗τ3), (4.28)

119

and separate g⃗ as a sum of terms only dependent on one of the system states.

g⃗(⃗x, x⃗τ1, x⃗τ2, x⃗τ3) = g⃗1(⃗x)+ g⃗2(⃗xτ1)+ g⃗3(⃗xτ2)+ g⃗4(⃗xτ3),

where,

g⃗1(⃗x) =

−D1x1
−D2x2
−D3x3

−A f (x1)x4 −2A f (x2)x4

 , g⃗2(⃗xτ1) =

B1 f (x2τ) f (x3τ)x4τ

0
0

A f (x1τ)x4τ

 ,

g⃗3(⃗xτ2) =

0

B2 f (x1τ)x4τ

0
A f (x2τ)x4τ

 , g⃗4(⃗xτ3) =

0
0

B3 f (x1τ)x4τ

A f (x2τ)x4τ

 ,

where f (x) = xn

κn+xn . Now, the system can be linearized about q as,

˙⃗x ≈ G1(⃗q)(⃗x− q⃗)+
4

∑
i=2

Gi(q)(⃗xτi − q⃗), (4.29)

where Gi is the Jacobian matrix of g⃗i(⃗xτi−1). The Jacobian matrices for this system are analytically
computed with the matrix of partial derivatives. For example, G1 is computed as,

G1 =

∂ g⃗11
∂x1

∂ g⃗11
∂x2

∂ g⃗11
∂x3

∂ g⃗11
∂x4

∂ g⃗12
∂x1

∂ g⃗12
∂x2

∂ g⃗12
∂x3

∂ g⃗12
∂x4

∂ g⃗13
∂x1

∂ g⃗13
∂x2

∂ g⃗13
∂x3

∂ g⃗13
∂x4

∂ g⃗14
∂x1

∂ g⃗14
∂x2

∂ g⃗14
∂x3

∂ g⃗14
∂x4

 ,

where ∂g1 j
∂xk

is the partial derivative of the j-th component of the g1 vector with respect to xk. A
similar process is used for G2, G3 and G4 with the main difference being that the derivatives are
computed with respect to delayed states at the corresponding delay τi. Carrying out this procedure
yields the following expressions for the Jacobian matrices.

120

G1(⃗q) =

−D1 0 0 0

0 −D2 0 0
0 0 −D3 0

−2A f ′(p∗1)R
∗ −A f ′(p∗2) f (p∗3)R

∗ −A f (p∗2) f ′(p∗3)R
∗ −2A f (p∗1)−A f (p∗2) f (p∗3)

 ,

G2(⃗q) =

0 B1 f ′(p∗2) f (p∗3)R

∗ B1 f (p∗2) f ′(p∗3)R
∗ B1 f (p∗2) f (p∗3)

0 0 0 0
0 0 0 0
0 A f ′(p∗2) f (p∗3)R

∗ A f (p∗2) f ′(p∗3)R
∗ A f (p∗2) f (p∗3)

 ,

G3(⃗q) =

0 0 0 0

B2 f ′(p∗1)R
∗ 0 0 B2 f (p∗1)

0 0 0 0
A f ′(p∗1)R

∗ 0 0 A f (p∗1)

 ,

G4(⃗q) =

0 0 0 0
0 0 0 0

B3 f ′(p∗1)R
∗ 0 0 B3 f (p∗1)

A f ′(p∗1)R
∗ 0 0 A f (p∗1)

 ,

where f ′(x) = nκnxn−1

(κn+xn)2 . Finally, we introduce the change of variables y⃗ = x⃗ − q⃗ to Eq. (4.29)
resulting in the linearized system:

ẏ ≈ G1(⃗q)⃗y(t)+G2(⃗q)⃗y(t − τ1)+G3(⃗q)⃗y(t − τ2)+G4(⃗q)⃗y(t − τ3). (4.30)

For the trivial equilibrium (0,0,0,RT), we have f (0) = 0 and f ′(0) = 0, and the matrices G2,
G3 and G4 vanish. Thus, similarly to the single protein system, the linearization at the trivial
equilibrium becomes a simple ODE system

ẏ ≈

−D1 0 0 0

0 −D2 0 0
0 0 −D3 0
0 0 0 0

 y⃗.

This system has four eigenvalues −D1, −D2, −D3, and zero. Again, the characteristic exponent
equal to zero corresponds to family of equilibria parameterized by RT and can be discarded. We
conclude that the trivial equilibrium point is locally stable for all positive decay rates (D1 > 0, D2 >
0, D3 > 0).

4.1.4 Methods

4.1.4.1 Spectral Element Approach — Linear Stability Analysis
For analyzing the dynamic behavior of the system and identify regions of bistablity in parame-

ter space, we study the linear stability of the equilibria. We use the spectral element method, which
is an advanced numerical method for the stability analysis of DDE systems [273]. In particular,

121

the linear variational systems Eq. (4.17) and Eq. (4.30) for perturbations around the equilibrium
points are converted to a dynamic map, which describes the evolution of the system state z⃗n−1 at
time step n−1 to the system state z⃗n at time step n

z⃗n = U⃗zn−1, (4.31)

where U is the monodromy matrix. The state vector z⃗n is a discrete representation of the DDE
state, which contains information of the system variable y⃗ for the time interval [t − τmax, t], where
τmax is the maximum delay. The matrix U is a high dimensional approximation of the monodromy
operator which is an operator that allows for mapping dynamic states forward in time by one pe-
riod [273]. The full operator is infinite dimensional, but this method utilizes finite approximations
of the operator to permit computing approximate solutions to the characteristic equation of the sys-
tem. Specifically for the spectral element method, because the system is transformed into a discrete
map, if the eigenvalues of U have a magnitude less than unity, that equilibrium point is stable and
larger than one makes it unstable. If the magnitude is exactly one the equilibrium point is said to
be marginally stable and this also is indicative that the equilibrium is non-hyperbolic [274]. Note
that the monodromy matrix for an autonomous system always has a trivial eigenvalue λ = 1 which
does not dictate the stability of the equilibrium point [275]. In the case where the trivial eigenvalue
is the furthest from the origin we take the second largest eigenvalue of the system to characterize
the stability.

This problem falls under the broader classification of pseudospectral differencing methods
where in general an approximation of an infinite dimensional operator is computed resulting in
a matrix where the eigenvalues approach solutions to the characteristic equation of the linear de-
lay differential equations [276]. Further, Breda et al. proved many useful convergence results for
such methods such as the fact that none of the eigenvalues of the approximation matrix are “ghost
roots”. This means that all of the computed eigenvalues will eventually converge to a true root of
the full infinite dimensional system if sufficient nodes are used in the discretization [276]. It is
also known that roots closer to the origin in the complex plane are approximated first with these
differencing methods so it is important to use sufficient discretization meshes to find the unstable
eigenvalues [276]. It has been shown that for a DDE system the number of characteristic equation
roots in the right half of the complex plane is finite [277] meaning that if enough eigenvalues are
approximated for the system about its equilibrium, eventually the right most eigenvalue will be
computed which allows for characterizing the stability of the equilibrium point. For a discrete sys-
tem this means that the number of eigenvalues outside of the unit circle is finite. In further sections,
methods described in [273] are applied for discretizing and computing dominant eigenvalues for
the metabolic systems to evaluate the system stability at different parameters.

4.1.4.2 Numerical Simulations
For the second method, we chose to perform many numerical simulations to demonstrate the

behavior of the system and connect the results to experimental observations. This was done by
brute force simulation of the system using the Julia differential equations library. The goal was
to study specific features of the system trajectories in the parameter space to locate regions with
different types of solutions. A diagram is obtained from the simulations by computing scalar
features of the asymptotic solutions from time domain simulations and plotting the result as an
image as a 2D projection of the overall parameter space. The features can be used to distinguish
periodic solutions from equilibria. If the simulation times are long enough such that the system

122

behaviour is characteristic of its long run behavior, we refer to this as the steady state response
as this is when the transient response has dissipated. The method for computing these response
feature diagrams for this system was inspired by the AttractionsViaFeaturizing function of the
dynamical systems library in Julia [278]. This method computes a feature M : Rn → R on the
system trajectory with n system variables that indicate different features of the system response
at each point in the parameter space. For this analysis, we needed to fix the history function for
our systems. Specifically for this paper, we focus on a feature based on the amplitude of the time
series signals. However, many other features can be used to study system behavior such as the
mean response and standard deviation. We compute the amplitude feature A of a response xi(t) as:

Ai =
1
2
(max(xi(t))−min(xi(t))) .

The amplitude feature is then consolidated into a scalar value by summing over the variables in i
as:

MA =
n

∑
i=1

Ai. (4.32)

If the trajectory is stable, we expect MA to be close to zero and if the response contains oscillations
MA should be nonzero and finite.

4.1.4.3 Low Growth History Functions
To compute features of the system response, sufficient information is required to simulate the

system such as the start time, end time and initial conditions. One critical difference between time
delay differential equation systems (DDE) and ordinary differential equation systems (ODE) is
that a DDE system requires the solution to be defined over the interval [−τmax,0] rather than just
supplying a single point initial condition for an ODE system. A history function was chosen based
on the experimental process for achieving these metabolic oscillations in practice [244]. In this
paper, the authors starve the cells of all resource prior to the oscillations. Consequently, the protein
production rate is also zero during this time.

Single Protein History Function and Initial Conditions To define the history function for the
single protein model, we assume that the cell was operating at zero protein production on [−τ,0).
In other words, p(θ) = 0 and R(θ) = 0 for θ ∈ [−τ,0), whereas at time t = 0 we set p(0) = p0.
We obtain the initial conditions of the system by letting t = 0 in Eq. (4.3) yielding:

RT = R0 +A
∫ 0

−τ

f (p(s))R(s)ds, (4.33)

where R0 = R(0) is the resource value at time t = 0. For a response of this system to be valid,
Eq. (4.33) must hold for the value of RT used for the simulation. Since p and R are zero for the
history function, the integral in Eq. (4.33) vanishes and we have R0 = RT . As a result, for each
simulation RT can be specified and any positive value of p0 can be chosen. This system can then
be studied by varying the parameters p0, τ and RT and holding the remaining parameters constant
to determine which parameter values result in periodic solutions.

123

Three Protein History Function and Initial Conditions The solutions for the three protein
system are also studied using the same zero resource and zero protein production assumption prior
to t = 0. So p1(θ) = p2(θ) = p3(θ) = 0 and R(θ) = 0 for θ ∈ [−τmax,0). Applying this to the total
resource equation from Eq. (4.20) again yields R0 = RT . Similar to the single protein system, the
initial protein production rates p10, p20 and p30 can be varied in the system. The dimension of the
parameter space is reduced by limiting this system to the case where τ1 = τ2 = τ3 = τ or in other
words, all three proteins require the same production time. We then vary this delay and the total
resource to determine which parameter combinations yield oscillations in the system response.

4.1.4.4 Boundary Value Calculation of Periodic Solutions to Nonlinear DDE Systems
As an alternative to detecting periodic orbits by simulation and amplitude computation, we will

find them directly by solving a boundary value problem (BVP). This method comes from [279]
where the authors describe how a nonlinear DDE system can be converted to a BVP where the
solutions to this problem correspond to periodic solutions of the original system. Specifically,
the system is converted to the boundary value problem in Eq. (4.34) and the spectral element
method is used to discretize the DDE system to approximate the infinite dimensional BVP as a
finite dimensional problem that can be solved numerically to obtain a single period of the periodic
solution to the system [279].

f⃗ =
d⃗x
dt

−T g⃗(⃗x(t), x⃗(t − τ/T)) = 0, t ∈ [0,1],

x⃗(s)− x⃗(s+1) = 0, s ∈ [−τ/T,0],
p(⃗x) = 0,

(4.34)

where T is the system period, x⃗ is the vector of system variables, and the first line corresponds
to the specific DDE system being studied. In this case we take g⃗ to be Eq. (4.12) for the single
protein system, and Eq. (4.28) for the three protein system. The second line imposes a periodicity
condition on the system and the last line imposes a phase condition to yield a unique periodic
solution by setting p(⃗x) to be the inner product of the initial state (⃗x0) and the time derivative
˙⃗x(t) [279]. An initial guess is provided by simulating the system in Julia using the differential
equations library and this simulation is provided to the boundary value problem solver in Matlab
to perform Newton-Raphson iteration and converge on the periodic solution. This process also
yields an approximation to the period T of the system. This method has been shown to compute
accurate periodic solutions for nonlinear DDE systems with exponential convergence rates as the
number of mesh points increases [279] making it ideal for verifying parameters of the metabolic
system that result in oscillating solutions to the system.

4.1.5 Results — Single Protein
The single protein system is analyzed in this section by applying the three methods outlined in

Sec. 4.1.4.

4.1.5.1 Spectral Element Linear Stability
The eigenvalues of the linearized single protein system about its nontrivial equilibrium points

were approximated at each set of parameters in a 400×400 grid in the (τ,RT) plane varying each
parameter from zero to 50 using the monodromy matrix from the spectral element method [273].

124

Figure 4.1 Single protein middle equilibrium point stability diagrams. Specifically, the
eigenvalues with maximum magnitude of the monodromy matrix are plotted with respect to the
parameters τ and RT . (left) the real part of the dominant eigenvalue, (middle) imaginary part of
the dominant eigenvalue, (right) the modulus of the eigenvalue. The red curve with triangles is the
saddle node boundary that separates regions with 1 and 3 equilibria. Above the red curve all three
equilibrium points exist and below the curve only the trivial point is present.

We hold the remaining parameters constant at κ = 0.5, A = 1.0, B = 2.0, D = 10.0, n = 2. The
monodromy matrix requires an oscillation period to map the system states to the next period. It
has been shown that for systems with one delay the period can be set as the delay for stability
computations [273]. For this reason, we set the period to τ for this stability analysis. We examine
the stability of the equilibrium points by plotting the magnitude of the eigenvalue furthest from
the origin. Stability diagrams were plotted for the nontrivial equilibrium points. Note that below
the curve in Eq. (4.11), only the trivial equilibrium is present (0,RT), but above this curve three
equilibrium points exist in the system. We only consider the stability of the nontrivial equilibria in
this section as the stability of the trivial solution is computed analytically in Section 4.1.2.3. As a
result, we color points in the stability diagram as white if only the trivial equilibrium is present in
that region.

We start by computing the stability of the middle equilibrium point as shown in Fig. 4.1 where
we plot the dominant eigenvalue of the middle equilibrium point for combinations of τ and RT
between 0 and 50. We see that for all parameters shown, this equilibrium point is unstable because
its largest eigenvalue is outside of the unit circle in the complex plane.

Next, we plot the largest magnitude eigenvalue of the top equilibrium point in Fig. 4.2 where
we see that for small delay and sufficient resource, the top equilibrium point is stable with |λ |< 1.
As the delay increases for a given total resource, a pair of complex conjugate eigenvalues leave the
unit circle that govern the stability of this equilibrium point making it an unstable focus [274].

Therefore, a Hopf bifurcation occurs from the top equilibrium point along this line. We plot
the Hopf bifurcation curve in subsequent stability diagrams as a green line with dots. This line was
found to be approximately,

RT = 2.6449τ +4.6323, (4.35)

for τ ≥ 0.75 by computing a linear regression along the boundary where the eigenvalue exits the
unit circle. The model had a coefficient of determination of 0.9999 indicating that this boundary is
well approximated by a linear model.

125

Figure 4.2 Single protein top equilibrium point stability diagrams. Specifically, the eigenvalues
with maximum magnitude of the monodromy matrix are plotted with respect to the parameters τ

and RT . (left) the real part of the dominant eigenvalue, (middle) imaginary part of the dominant
eigenvalue, (right) the modulus of the eigenvalue. The red curve with triangles is the saddle node
boundary that separates regions with 1 and 3 equilibria. Above the red curve all three equilibrium
points exist and below the curve only the trivial point is present. The Hopf bifurcation curve is
shown as a line with green dots.

4.1.5.2 Response Features
Response feature diagrams were generated for the single protein system (Eq. (4.5)) for κ = 0.5,

A = 1.0, B = 2.0, D = 10.0, n = 2 with varying τ , RT and p0. The results for these simulations are
shown in Fig. 4.3 where we color pixels in the parameter space according to the response amplitude
feature using Eq. 4.32. We used the starving cell history function from Section 4.1.4.3 and each
simulation was taken between 10000–11000 time units to ensure that the transient response had
dissipated. The authors acknowledge the arbitrarily chosen parameters for this system and that
these parameters may not be in biologically significant range. However, our model is conceptual
and the purpose of this paper is to demonstrate that certain parameters yield oscillations in the
protein production when the cell is starved of resource prior to t = 0. This is also the reason why
we use “time units” instead of seconds for the simulations.

First we study the dependence on the initial protein production rate p0 by fixing the delay at τ =
10 and plotting the amplitude feature over the region (p0,RT) ∈ [0,10]× [0,50]. We see in Fig. 4.3
(a) that for nontrivial p0, the response is essentially independent of the initial condition so any
large enough initial protein production rate was sufficient. For small p0 the response approaches
the trivial equilibrium point. While this diagram is only shown for a single delay, we observed a
trend where as the delay varies, the only change is in the width of the limit cycle region for large
enough p0. For this reason, we arbitrarily choose p0 = 10 for our initial p0.

Next, we keep p0 = 10 and vary the parameters (τ,RT)∈ [0,50]× [0,50] and plot the amplitude
feature in this region of the parameter space in Fig. 4.3 (b) along with the Hopf and saddle node
bifurcation boundaries obtained from the linear stability analysis. We see that periodic solutions
were found above the Hopf curve for this particular history function indicating that the Hopf bi-
furcation is subcritical. So slightly above the green curve we have a bistability between the top
equilibrium, trivial equilibrium, and the limit cycle. Below the Hopf curve we have a bistability
between the trivial equilibrium point and the limit cycle and below RT ≈ 7 we did not observe
any oscillations and the trajectory approached the trivial equilibrium. Note that the pink curves
in Fig. 4.3 (a) are specific to τ = 10 and will increase as the delay is increased according to the
bounds of the periodic region in Fig. 4.3 (b). In other words, at a delay of 10 if we draw a vertical

126

line in Fig. 4.3 (b), we should expect it to intersect the blue region at RT ≈ 7 and RT ≈ 42 which
correspond to the pink curves in Fig. 4.3 (a) for nontrivial p0. We can also show a horizontal slice
of Fig. 4.3 (b) which produces a bifurcation diagram in τ as shown in Fig. 4.3 (c). The stable
periodic orbit was generated by setting RT = 30 and using simulations with the initial conditions
from Fig. 4.3 (b). The stability region for the top equilibrium point was computed using analyt-
ical expressions. This region ends in subcritical Hopf bifurcation at τ ≈ 9.59. Importantly, the
region between τ ≈ 6.78 and τ ≈ 9.59 exhibits bistability since the stable equilibrium and a stable
periodic orbits coexist. Since the branch of periodic orbits connecting the Hopf bifurcation to the
stable periodic orbit at τ ≈ 9.59 is unstable, we are unable to find it using simulations.

(a) p0 Dependence (b) τ, RT Dependence
(c) τ Bifurcation Diagram

(RT = 30)

Figure 4.3 Single protein model response feature diagrams by varying system parameters p0, τ

and RT and simulating the system at for each parameter combination between 0 and 50. The solid
pink curve corresponds to a point on the horizontal boundary at τ = 25 in the middle image and
the dashed pink curve corresponds to a point on the boundary above the green curve at τ = 25 in
the middle image. The red curve with triangles is the saddle node boundary that separates regions
with 1 and 3 equilibria, the line with green dots is the Hopf bifurcation boundary. The right image
corresponds to a horizontal slice of the middle plot at RT = 30 to show the bifurcation diagram as
τ is varied.

4.1.5.3 Periodic Solutions
Next we utilize the spectral element approach to solve the boundary value problem in Eq. (4.34).

This process was performed on the three points in the (τ,RT) parameter space where oscillations
were expected and the two points where we expect fixed point responses. The first point considered
was τ = 12 and RT = 50. We see that this point corresponds to a response with nonzero amplitude
indicating that oscillations should be expected and is in the subcritical region of the Hopf bifur-
cation. The system was simulated and sampled between 15,988–16,000 time units for the period.
Because the system is autonomous, we can take the period to be equal to the delay. Solving the
boundary value problem in Eq.(4.34) for the periodic solution, we obtain the response shown in
Fig. 4.4. We see that the periodic solution from the boundary value problem closely matches the
simulation result with the period matching the delay. Further, the protein production rate is nearly
constant and close to the top equilibrium point (p∗,R∗) = (0.7434,5.3982) for most of the period
in this case with a drop in the production rate emerging yielding the metabolic oscillations.

The next parameters that were considered were τ = 10 and RT = 20. The system was simulated

127

Figure 4.4 τ = 12 and RT = 50 single protein periodic solution results from solving the relevant
boundary value problem.

at these parameters from 15,990–16,000 time units and the period was set to 10. Passing this
initial guess into the boundary value problem, the obtained periodic solution is shown in Fig. 4.5.
Interestingly, we see that the time that the protein production rate spends at 0 is much longer
compared to Fig. 4.4. As the Hopf bifurcation curve is crossed, the drop in the protein production
rate appears to spend more time at zero during the oscillation period.

Figure 4.5 τ = 10 and RT = 20 single protein periodic solution results from solving the relevant
boundary value problem.

The third set of parameters considered was τ = 45 and RT = 15. The system was simulated
at these parameters from 15,955–16,000 time units and the period was set to 45 resulting in the
periodic solution shown in Fig. 4.6. We see that the trajectory starts to spend more time near
a protein production rate of zero as the total resource approaches the horizontal line RT ≈ 7 in
Fig. 4.3 (b). The periodic solutions shown demonstrate the transition from the fixed point stability
at the top equilibrium to fixed point stability at the trivial equilibrium.

128

Figure 4.6 τ = 45 and RT = 15 single protein periodic solution results from solving the relevant
boundary value problem.

4.1.5.4 Steady State Solutions
We also explore the steady state solutions of the system by examining two parameter condi-

tions. The first case is where the total resource is too low to sustain protein production (low growth
conditions). In this case, we found a trajectory that approaches the trivial equilibrium point. This
was verified by simulating the system at τ = 45 and RT = 5. The resulting response is shown in
Fig. 4.7 where we see the system approach (p,R) = (0,RT). We also consider the case where the

Figure 4.7 Approach to trivial fixed point for low growth conditions in the cell (τ = 45, RT = 5)

cell has access to plentiful resources and can synthesize proteins at a constant rate (high growth
conditions). To examine this case, we simulated the system at τ = 5 and RT = 50. The response
for these parameters is shown in Fig. 4.8. We see that as time progresses, the protein production
rate approaches a steady state value because the cell is able to produce proteins at a constant rate.
Further, the point that this trajectory approaches corresponds to the top equilibrium point of the
system which for these parameters works out to be (p∗,R∗)≈ (1.6412,8.968).

129

Figure 4.8 Fixed point response for high growth conditions in the cell (τ = 5, RT = 50)

4.1.5.5 Single Protein Summary
Three distinct behaviors were observed in the single protein time delay model. First, if the

resources are not sufficient to sustain metabolic activity, the system will approach the trivial equi-
librium point with zero protein production rate. If the resources are plentiful, they can sustain
constant protein production at the top equilibrium point. Between these two cases, the cell initially
has enough resource to synthesize proteins, but as the protein production rate increases, resources
are used and the metabolic activity decreases. This balance between constant production and no
production seems to lead to oscillations in the system response. Slightly above the Hopf bifur-
cation curve, we observe oscillations that are close to a constant solution at the top equilibrium
and as the parameters cross the Hopf curve and approach the line RT ≈ 7, the solution continues
to oscillate but with a solution that is closer to a constant solution at the trivial equilibrium. The
oscillation region represents a transition between the top and trivial equilibria and the middle so-
lution remains unstable for all parameters in this region. For τ < 0.75, the solution can switch
directly between the top and trivial equilibrium with no oscillations, but after this bifurcation point
at (τ,RT) ≈ (0.75,6.6), the periodic solution emerges to transition from constant to zero protein
production.

4.1.6 Results — Three Proteins
The three protein system is analyzed in this section by applying the three methods outlined in

Sec. 4.1.4.

4.1.6.1 Spectral Element Linear Stability
Our main goal with the three protein system was to find parameters where the protein pro-

duction rates peak at different times in the period. This phenomena would be indicative of the
cell prioritizing its resources to produce proteins in a way that could be more efficient. To begin
exploring this systems parameter space, we use the spectral element method to study the linear
stability of the three protein system with arbitrarily chosen parameters κ = 0.5, A = 1.0, B1 = 2.0,
B2 = 2.0, B3 = 2.0, D1 = 10.0, D2 = 10.0, D3 = 10.0, n = 2. We set τ1 = τ2 = τ3 = τ such that
all three proteins require the same amount of production time, and vary τ and RT just as was done
with the single protein system.

However, for this system we do not have analytical expressions for the equilibrium solutions
and we only have the coupled polynomial system in Eqs. (4.24), (4.25), and (4.26). Solving this

130

system of equations is a nontrivial task, but if we make some assumptions based on our obser-
vations from the single protein system we can still generate stability diagrams using this method.
Namely, we will assume that this system also exhibits three possible equilibrium points (top, mid-
dle, and trivial). Using the variable precision accuracy (VPA) solver in Matlab, we can solve this
system of equations numerically in our parameter space and approximate the dominant eigenvalues
to characterize the stability of each point. The documentation for the VPA solver used states that
for polynomial systems, all solutions in a region will be returned by the function [272]. This solver
was applied to a 400×400 grid of parameters in (τ,RT) ∈ [0,50]× [0,100], and the assumption
was found to be correct where one region of the space contained 3 equilibrium points and the other
region only contained the trivial point.

With the single protein system, we defined the top and middle equilibrium points based on the
magnitude of the equilibrium protein production rate p∗. However, in the three protein system we
have multiple equilibrium protein production rates. To modify this approach for the three protein
system, we form the following vector of equilibrium coordinates,

p⃗ =
[
p∗1 p∗2 p∗3

]T
.

Thus, the top and middle equilibria are defined by the l2 norm of p⃗ where the top equilibrium
has the largest l2 norm and the middle solution has a norm between the top and trivial. We then
use Eq. (4.23) to obtain R∗ for a given set of parameters at each equilibrium point. This system can
then be linearized about each equilibrium point using Eq. (4.30) and the dominant eigenvalue of
the linearized system at a given set of parameters can be approximated with the spectral element
method described in Section 4.1.4.1. We note that because a single delay is present, we use this
delay for the system period when computing the monodromy matrix for the system.

Similar to the single protein model, we start by plotting the stability of the middle equilibrium
point in Fig. 4.9. Note that we color the region as white if only the trivial equilibrium is present.
We see that there are two distinct regions in the plot of the magnitude of the eigenvalue. The curve
that separates these regions is the saddle node bifurcation curve for this system. Using a third order
polynomial fit, the saddle node curve was found to be,

RT = 0.0016τ
3 −0.1118τ

2 +4.8855τ +10.3749, (4.36)

for τ ≥ 0.625. This curve had a coefficient of determination of 0.9997. We plot the saddle node
boundary as a red curve with triangles in the stability diagrams.

Because the dominant eigenvalue for the middle equilibrium always has a modulus greater
than one for these parameters, this equilibrium point will not govern the stability of the system if
another point is stable or marginally stable. This was also the case with the single protein system.

Lastly, we plot the stability of the top equilibrium point of this system in Fig. 4.10. These
diagrams show that for small delay and large resource, this point is stable. As the delay increases
for a given resource, this point becomes an unstable focus by way of a Hopf bifurcation. We plot
the Hopf bifurcation curve as a green line with dots. This curve was approximated by locating
points in the parameter space with unit length eigenvalues. Using linear regression, the Hopf
bifurcation curve was approximated to be,

RT = 12.0948τ +4.7910, (4.37)

131

Figure 4.9 Three protein middle equilibrium point stability diagrams at equal delay. Specifically,
the eigenvalues with maximum magnitude of the monodromy matrix are plotted with respect to
the parameters τ and RT . (left) the real part of the dominant eigenvalue, (middle) imaginary part
of the dominant eigenvalue, (right) the modulus of the eigenvalue. The red curve with triangles is
the saddle node boundary that separates regions with 1 and 3 equilibria. Above the red curve all
three equilibrium points exist and below the curve only the trivial point is present.

for τ ≥ 0.75. This model had a coefficient of determination of 0.9987 suggesting that it is a good
approximation. Note that while there is interesting behavior that occurs between the green (dots)
and red (triangles) curves in these stability diagrams, all of the eigenvalues plotted are outside
of the unit circle and are therefore unstable so this is not a bifurcation it just means that another
eigenvalue moved further from the origin.

Figure 4.10 Three protein top equilibrium point stability diagrams at equal delay. Specifically, the
eigenvalues with maximum magnitude of the monodromy matrix are plotted with respect to the
parameters τ and RT . (left) the real part of the dominant eigenvalue, (middle) imaginary part of
the dominant eigenvalue, (right) the modulus of the eigenvalue. The red curve with triangles is the
saddle node boundary that separates regions with 1 and 3 equilibria. Above the red curve all three
equilibrium points exist and below the curve only the trivial point is present. The Hopf
bifurcation curve is shown as a line with green dots.

4.1.6.2 Response Features
Holding the remaining parameters constant at the values from Section 4.1.6.1, an amplitude

feature diagram was generated with equal delays for all three proteins and varying the delay τ with
the total resource RT . The three protein system was simulated between 10,000–11,000 time units
using the zero history function described in Sec. 4.1.4.3, and the amplitude feature was plotted in

132

Figure 4.11 Three protein system response amplitude diagram in the τ −RT parameter space
where τ is the same delay for all three proteins. The low growth history function was used for all
simulations in this diagram.

the τ −RT space where τ is the same for all three proteins. The results are shown in Fig. 4.11.
We see that the amplitude diagram has a similar structure to the single protein system, but there
is a change in the amplitude feature for a small region at low total resource. System responses
in these regions are explored further in Section 4.1.6.3. We plot the Hopf bifurcation curve from
Section 4.1.6.1 in Fig. 4.11 as the green line with dots. The red curve with triangles corresponds
to the saddle node bifurcation curve from the approximations in Section 4.1.6.1.

4.1.6.3 Periodic Solutions
Three points were considered within the region of the parameter space with nontrivial am-

plitude in Fig. 4.11. Namely, we choose (τ,RT) = (5.7,100), (25,50) and (25,11.8). The first
point is in the nonzero amplitude region to the left of the Hopf bifurcation curve. This point was
chosen to verify the subcriticality of the Hopf bifurcation. The second point was chosen to show
the response near the middle of the oscillation region. We chose the third point in the region of
differing amplitude at low total resource to observe the changes that occur when the cell has lim-
ited resources available. The steady state regions or regions with near zero amplitude were found
to exhibit similar behaviors to the single protein model outside of the oscillation region so these
responses will not be considered.

Starting with τ = 5.7 and RT = 100, the system was simulated between 15,000 and 15,005.7
time units to capture a single period of the response. This solution was then verified by solv-
ing the nonlinear DDE boundary value problem to obtain the periodic solution in Fig. 4.12. We
see that the obtained solution is nearly identical to the simulation and appears to be close to a
constant solution at the top equilibrium point which for these parameters is at (p∗1, p∗2, p∗3,R

∗) ≈
(0.9942,1.1328,1.1328,7.0965). We also note that all of the protein production rates here appear
to oscillate in-phase.

Next, we study the solution when τ = 25 at the same resource RT = 50. This point corresponds
to a region in the response feature diagram in Fig. 4.11 with the same amplitude as the solution

133

Figure 4.12 Boundary value problem solution for the three protein system with τ = 5.7 and
RT = 100.

in Fig. 4.12. Plotting the response for these parameters between 15,000 and 15,025 time units
yielded Fig. 4.13. We see that as the total resource has decreased, the periodic solution is at zero
protein production rates for most of the period. Again, the protein production rates appear to
oscillate in-phase for these parameters. Lastly, we compute a periodic solution in the thin region

Figure 4.13 Boundary value problem solution for the three protein system with τ = 25 and
RT = 50.

of larger amplitude feature at low total resource. To do this, we chose τ = 25 and RT = 11.8. The
periodic solution was obtained using simulation data between 15,000 and 15,025 time units and
the resulting solution is shown in Fig. 4.14. It is clear that the periodic solution at these parameters
is much different from the others. We see that the peak for p1(t) has shifted out of phase with the
other proteins. This behavior could indicate that at extremely low resource, the best way to share
that resource is to separate production of different proteins to different times, as this results in a
more efficient use of resource for the cell.

134

Figure 4.14 Boundary value problem solution for the three protein system with τ = 25 and
RT = 11.8.

4.1.6.4 Three Protein Summary
The three protein system was found to behave similarly to the single protein system. Three

equilibrium points were found numerically, and a subcritical Hopf bifurcation was found in the τ −
RT parameter space where all three proteins exhibited the same production time τ . A large region
of periodic solutions was found by numerical simulation by way of a resource limiting history
function which aligns with experimental observations [244]. It was found that for small delay
and large total resource, the cell can produce all proteins at a constant rate at the top equilibrium
point. Due to the subcritical Hopf bifurcation of the top equilibrium point, an oscillation region
appears in the parameter space which facilitates the transition from constant production to zero
production just as was observed in the single protein system. Below the Hopf bifurcation curve,
there is a bistability between the trivial equilibrium and the limit cycle, but slightly above the Hopf
bifurcation curve there is a bistability between the top and trivial equilibrium points and the limit
cycle. The trivial equilibrium was found to have a small basin of attraction and is only approached
for small initial protein production rates p0.

4.1.7 Conclusion
We introduced a nonlinear time delay framework for modeling metabolic oscillations during

protein synthesis in yeast cells. The model contains many parameters that control the behavior
of the system where the delays correspond to the respective protein production times. The single
protein and three protein variants of this model were studied to locate regions in the parameter
space where the metabolic activity contained oscillations. Due to the complexity of the model,
three numerical methods were utilized for locating limit cycles in these systems. First, a spectral
element method was used to approximate the system as a high dimensional map whose eigen-
values approximate the true spectrum of the system allowing for the stability of the fixed points
to be characterized in a subset of the parameter space. Three equilibrium points were found for
each system and a subcritical Hopf bifurcation curve was located in the parameter space where
an equilibrium point of the system loses stability and a limit cycle emerges leading to periodic
solutions. The second numerical method utilized system simulations carried out over a range of τ

135

to show the region of bistability where the stable steady state and a stable periodic orbit coexist.
The simulation results were verified with the third numerical method where a finite dimensional
boundary value problem (BVP) was solved by discretizing the system using a spectral element
approach. We found a large region of the parameter space to have nonzero amplitude of oscillation
for a range of delay and total resource values. It was observed that the oscillation region forms
as a transition between two steady states in the system (constant production and zero production)
for large enough production times. It was also observed that for the three protein model when
the resources were shared and each protein had an equal production time, certain parameters at
low total resource resulted in a temporal shift in the protein production rate peaks. Our simulation
results are consistent with what has been observed in experiment, and our model helps argue that
the observed temporal shift is a more efficient use of resources for the cell.

136

BIBLIOGRAPHY

[1] A. D. Myers and F. A. Khasawneh, “Damping parameter estimation using topological signal
processing,” Mechanical Systems and Signal Processing, vol. 174, p. 109042, 7 2022.

[2] S. Tymochko, E. Munch, and F. A. Khasawneh, “Using zigzag persistent homology to detect
hopf bifurcations in dynamical systems,” Algorithms, vol. 13, p. 278, oct 2020.

[3] M. C. Yesilli, F. A. Khasawneh, and A. Otto, “Chatter detection in turning using machine
learning and similarity measures of time series via dynamic time warping,” Journal of Man-
ufacturing Processes, vol. 77, pp. 190–206, 2022.

[4] M. Carriere, F. Chazal, M. Glisse, Y. Ike, and H. Kannan, “Optimizing persistent homology
based functions,” 10 2020.

[5] J. Leygonie, S. Oudot, and U. Tillmann, “A framework for differential calculus on persis-
tence barcodes,” Foundations of Computational Mathematics, vol. 22, pp. 1069–1131, 7
2021.

[6] M. Gameiro, Y. Hiraoka, and I. Obayashi, “Continuation of point clouds via persistence
diagrams,” Physica D: Nonlinear Phenomena, vol. 334, pp. 118–132, 11 2016.

[7] A. D. Myers, M. M. Chumley, F. A. Khasawneh, and E. Munch, “Persistent homology of
coarse-grained state-space networks,” Physical Review E, vol. 107, no. 3, p. 034303, 2023.

[8] M. M. Chumley, M. C. Yesilli, J. Chen, F. A. Khasawneh, and Y. Guo, “Pattern character-
ization using topological data analysis: Application to piezo vibration striking treatment,”
Precision Engineering, vol. 83, pp. 42–57, Sept. 2023.

[9] M. C. Yesilli, M. M. Chumley, J. Chen, F. A. Khasawneh, and Y. Guo, “Exploring Surface
Texture Quantification in Piezo Vibration Striking Treatment (PVST) Using Topological
Measures,” International Manufacturing Science and Engineering Conference, vol. Volume
2: Manufacturing Processes; Manufacturing Systems, 06 2022. V002T05A061.

[10] M. M. Chumley, F. A. Khasawneh, A. Otto, and T. Gedeon, “A nonlinear delay model for
metabolic oscillations in yeast cells,” Bulletin of Mathematical Biology, vol. 85, Nov. 2023.

[11] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.

[12] T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational Homology. Springer, Jan.
2004.

[13] R. Ghrist, “Barcodes: The persistent topology of data,” Builletin of the American Mathe-
matical Society, vol. 45, pp. 61–75, 2008. Survey.

[14] G. Carlsson, “Topology and data,” Bulletin of the American Mathematical Society, vol. 46,
pp. 255–308, 1 2009. Survey.

[15] H. Edelsbrunner and J. Harer, Computational Topology: An Introduction. Rhode Island:
American Mathematical Society, 2010.

137

[16] K. Mischaikow and V. Nanda, “Morse theory for filtrations and efficient computation of
persistent homology,” Discrete & Computational Geometry, vol. 50, no. 2, pp. 330–353,
2013.

[17] S. Y. Oudot, Persistence theory: from quiver representations to data analysis, vol. 209 of
AMS Mathematical Surveys and Monographs. Rhode Island: American Mathematical Soc.,
2017.

[18] E. Munch, “A user’s guide to topological data analysis,” Journal of Learning Analytics,
vol. 4, pp. 47–61, jul 2017.

[19] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[20] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks: Tricks of the Trade:
Second Edition, pp. 421–436, Springer, 2012.

[21] J. Larson, M. Menickelly, and S. M. Wild, “Derivative-free optimization methods,” Acta
Numerica, vol. 28, pp. 287–404, 2019.

[22] M. J. Powell, “Direct search algorithms for optimization calculations,” Acta numerica,
vol. 7, pp. 287–336, 1998.

[23] W. Spendley, G. R. Hext, and F. R. Himsworth, “Sequential application of simplex designs in
optimisation and evolutionary operation,” Technometrics, vol. 4, no. 4, pp. 441–461, 1962.

[24] S. C. Endres, C. Sandrock, and W. W. Focke, “A simplicial homology algorithm for lipschitz
optimisation,” Journal of Global Optimization, vol. 72, pp. 181–217, 2018.

[25] T. M. Ragonneau and Z. Zhang, “Pdfo–a cross-platform package for powell’s derivative-free
optimization solver,” arXiv preprint arXiv:2302.13246, 2023.

[26] M. J. Powell, A direct search optimization method that models the objective and constraint
functions by linear interpolation. Springer, 1994.

[27] M. J. Powell, “Uobyqa: unconstrained optimization by quadratic approximation,” Mathe-
matical Programming, vol. 92, no. 3, pp. 555–582, 2002.

[28] M. J. Powell, “The newuoa software for unconstrained optimization without derivatives,”
Large-scale nonlinear optimization, pp. 255–297, 2006.

[29] M. J. Powell, “Developments of newuoa for minimization without derivatives,” IMA journal
of numerical analysis, vol. 28, no. 4, pp. 649–664, 2008.

[30] M. J. Powell et al., “The bobyqa algorithm for bound constrained optimization without
derivatives,” Cambridge NA Report NA2009/06, University of Cambridge, Cambridge,
vol. 26, 2009.

[31] M. J. Powell, “On fast trust region methods for quadratic models with linear constraints,”
Mathematical Programming Computation, vol. 7, pp. 237–267, 2015.

138

[32] “Chapter vi - vector optimization,” in Mathematics of Optimization (G. Giorgi, A. Guerrag-
gio, and J. Thierfelder, eds.), pp. 503–591, Amsterdam: Elsevier Science, 2004.

[33] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for engineer-
ing,” Structural and multidisciplinary optimization, vol. 26, pp. 369–395, 2004.

[34] W. Chen, A. Sahai, A. Messac, and G. J. Sundararaj, “Exploration of the effectiveness of
physical programming in robust design,” J. Mech. Des., vol. 122, no. 2, pp. 155–163, 2000.

[35] L. Zadeh, “Optimality and non-scalar-valued performance criteria,” IEEE transactions on
Automatic Control, vol. 8, no. 1, pp. 59–60, 1963.

[36] H. Chintakunta, T. Gentimis, R. Gonzalez-Diaz, M.-J. Jimenez, and H. Krim, “An entropy-
based persistence barcode,” Pattern Recognition, vol. 48, no. 2, pp. 391–401, 2015.

[37] P. T. Schrader, “Topological multimodal sensor data analytics for target recognition and
information exploitation in contested environments,” in Signal Processing, Sensor/Informa-
tion Fusion, and Target Recognition XXXII, vol. 12547, pp. 114–143, SPIE, 2023.

[38] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis. Cambridge: Cambridge Uni-
versity Press, nov 2004.

[39] M. W. Hirsch, S. Smale, and R. Devaney, Differential Equations, Dynamical Systems, and
an Introduction to Chaos (Pure and Applied Mathematics (Academic Press), 60.). Academic
Press, 2003.

[40] G. L. Baker and J. P. Gollub, Chaotic Dynamics. Cambridge University Press, 1 1996.

[41] H. Sayama, Introduction to the modeling and analysis of complex systems. Open SUNY
Textbooks, 2015.

[42] Y. A. Kuznetsov, Elements of applied bifurcation theory. New York: Springer, 1998.

[43] R. U. Seydel, Practical Bifurcation and Stability Analysis. Springer-Verlag GmbH, Nov.
2009.

[44] H. Dankowicz and F. Schilder, Recipes for Continuation. Society for Industrial and Applied
Mathematics, 5 2013.

[45] J. Sieber and B. Krauskopf, “Control based bifurcation analysis for experiments,” Nonlinear
Dynamics, vol. 51, pp. 365–377, 2 2007.

[46] J. Sieber, B. Krauskopf, D. Wagg, S. Neild, and A. Gonzalez-Buelga, “Control-based con-
tinuation of unstable periodic orbits,” Journal of Computational and Nonlinear Dynamics,
vol. 6, 9 2010.

[47] D. A. Barton, B. P. Mann, and S. G. Burrow, “Control-based continuation for investigating
nonlinear experiments,” Journal of Vibration and Control, vol. 18, pp. 509–520, 2 2011.

139

[48] E. Bureau, F. Schilder, I. F. Santos, J. J. Thomsen, and J. Starke, “Experimental bifurcation
analysis of an impact oscillator—tuning a non-invasive control scheme,” Journal of Sound
and Vibration, vol. 332, pp. 5883–5897, 10 2013.

[49] D. A. W. Barton and J. Sieber, “Systematic experimental exploration of bifurcations with
noninvasive control,” Physical Review E, vol. 87, p. 052916, 5 2013.

[50] D. A. Barton, “Control-based continuation: Bifurcation and stability analysis for physical
experiments,” Mechanical Systems and Signal Processing, vol. 84, pp. 54–64, 2 2017.

[51] S. Godwin, D. Ward, E. Pedone, M. Homer, A. G. Fletcher, and L. Marucci, “An extended
model for culture-dependent heterogenous gene expression and proliferation dynamics in
mouse embryonic stem cells,” npj Systems Biology and Applications, vol. 3, 8 2017.

[52] B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer,
A. Vladimirsky, M. Dellnitz, and O. Junge, “A survey of methods for computin (un)stable
manifolds of vector fields,” in World Scientific Series on Nonlinear Science Series B, pp. 67–
95, World Scientific, 3 2006.

[53] M. Peeters, R. Viguié, G. Sérandour, G. Kerschen, and J.-C. Golinval, “Nonlinear normal
modes, part II: Toward a practical computation using numerical continuation techniques,”
Mechanical Systems and Signal Processing, vol. 23, pp. 195–216, 1 2009.

[54] S. Huntley, D. Jones, and A. Gaitonde, “Bifurcation tracking for high reynolds number flow
around an airfoil,” International Journal of Bifurcation and Chaos, vol. 27, p. 1750061, 4
2017.

[55] A. Myers, E. Munch, and F. A. Khasawneh, “Persistent homology of complex networks for
dynamic state detection,” Physical Review E, vol. 100, p. 022314, 8 2019.

[56] E. Munch, “Teaspoon.” https://github.com/lizliz/teaspoon, 2018.

[57] A. Bapat, P. B. Salunkhe, and A. V. Patil, “Hall-effect thrusters for deep-space missions: A
review,” IEEE Transactions on Plasma Science, vol. 50, no. 2, pp. 189–202, 2022.

[58] K. Hara, “An overview of discharge plasma modeling for hall effect thrusters,” Plasma
Sources Science and Technology, vol. 28, no. 4, p. 044001, 2019.

[59] C. Chatfield, Time-Series Forecasting. Chapman and Hall/CRC, Oct. 2000.

[60] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in Advances in
Neural Information Processing Systems (J. Platt, D. Koller, Y. Singer, and S. Roweis, eds.),
vol. 20, Curran Associates, Inc., 2007.

[61] G. A. Gottwald and S. Reich, “Combining machine learning and data assimilation to forecast
dynamical systems from noisy partial observations,” Chaos: An Interdisciplinary Journal of
Nonlinear Science, vol. 31, no. 10, 2021.

140

[62] Z. Zhang and J. C. Moore, “Chapter 9 - data assimilation,” in Mathematical and Physical
Fundamentals of Climate Change (Z. Zhang and J. C. Moore, eds.), pp. 291–311, Boston:
Elsevier, 2015.

[63] G. Evensen, F. C. Vossepoel, and P. J. van Leeuwen, Data assimilation fundamentals: A
unified formulation of the state and parameter estimation problem. Springer Nature, 2022.

[64] E. Blasch, S. Ravela, and A. Aved, Handbook of Dynamic Data Driven Applications Sys-
tems, vol. 1. Springer, 01 2018.

[65] E. Blasch, “Dddas advantages from high-dimensional simulation,” in 2018 Winter Simula-
tion Conference (WSC), pp. 1418–1429, IEEE, 2018.

[66] L. Li, F.-X. Le Dimet, J. Ma, and A. Vidard, “A level-set-based image assimilation method:
Potential applications for predicting the movement of oil spills,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 55, no. 11, pp. 6330–6343, 2017.

[67] L. Li, A. Vidard, F.-X. Le Dimet, and J. Ma, “Topological data assimilation using wasser-
stein distance,” Inverse Problems, vol. 35, no. 1, p. 015006, 2018.

[68] M. J. Asher, B. F. Croke, A. J. Jakeman, and L. J. Peeters, “A review of surrogate models
and their application to groundwater modeling,” Water Resources Research, vol. 51, no. 8,
pp. 5957–5973, 2015.

[69] F. Darema, A. Aved, E. Blasch, and S. e. Ravela, Handbook of Dynamic Data Driven Ap-
plications Systems, vol. 2. Springer, 09 2023.

[70] F. Darema, E. Blasch, S. Ravela, and A. A. (eds.), eds., Dynamic Data Driven Applications
Systems - Third International Conference, DDDAS 2020, Boston, MA, USA, October 2-4,
2020, Proceedings, vol. 12312 of Lecture Notes in Computer Science, Springer, 2020.

[71] G. A. Gottwald and S. Reich, “Supervised learning from noisy observations: Combining
machine-learning techniques with data assimilation,” Physica D: Nonlinear Phenomena,
vol. 423, p. 132911, Sept. 2021.

[72] G. A. Gottwald and I. Melbourne, “On the implementation of the 0–1 test for chaos,” SIAM
Journal on Applied Dynamical Systems, vol. 8, pp. 129–145, jan 2009.

[73] G. A. Gottwald and I. Melbourne, “The 0-1 test for chaos: A review,” in Chaos Detection
and Predictability, pp. 221–247, Springer Berlin Heidelberg, 2016.

[74] M. Melosik and W. Marszalek, “On the 0/1 test for chaos in continuous systems,” Bulletin
of the Polish Academy of Sciences Technical Sciences, vol. 64, no. 3, pp. 521–528, 2016.

[75] M. T. Rosenstein, J. J. Collins, and C. J. D. Luca, “A practical method for calculating largest
lyapunov exponents from small data sets,” Physica D: Nonlinear Phenomena, vol. 65, no. 1-
2, pp. 117 – 134, 1993.

141

[76] C. Froeschlé, R. Gonczi, and E. Lega, “The fast lyapunov indicator: a simple tool to detect
weak chaos. application to the structure of the main asteroidal belt,” Planetary and Space
Science, vol. 45, pp. 881–886, jul 1997.

[77] J. Sprott, Chaos and time-series analysis. Oxford University Press, 2001.

[78] S. B. B. Aval, V. Ahmadian, M. Maldar, and E. Darvishan, “Damage detection of structures
using signal processing and artificial neural networks,” Advances in Structural Engineering,
vol. 23, pp. 884–897, nov 2019.

[79] N. M. Nejad, S. B. B. Aval, M. Maldar, and B. Asgarian, “A damage detection procedure
using two major signal processing techniques with the artificial neural network on a scaled
jacket offshore platform,” Advances in Structural Engineering, vol. 24, pp. 1655–1667, dec
2020.

[80] Z. Guo and Z. Sun, “Multiple cracked beam modeling and damage detection using frequency
response function,” Structural Longevity, vol. 5, no. 2, pp. 97–106, 2011.

[81] H. Sohn and C. R. Farrar, “Damage diagnosis using time series analysis of vibration signals,”
Smart Materials and Structures, vol. 10, pp. 446–451, 2001.

[82] M. S. Cao, G. G. Sha, Y. F. Gao, and W. Ostachowicz, “Structural damage identification us-
ing damping: a compendium of uses and features,” Smart Materials and Structures, vol. 26,
p. 043001, mar 2017.

[83] S.-H. Lee, J. S. Lim, J.-K. Kim, J. Yang, and Y. Lee, “Classification of normal and epileptic
seizure EEG signals using wavelet transform, phase-space reconstruction, and euclidean
distance,” Computer Methods and Programs in Biomedicine, vol. 116, pp. 10–25, aug 2014.

[84] F. M. Roberts, R. J. Povinelli, and K. M. Ropella, “Identification of ECG arrhythmias us-
ing phase space reconstruction,” in Principles of Data Mining and Knowledge Discovery,
pp. 411–423, Springer Berlin Heidelberg, 2001.

[85] T. Liu, W. Yao, M. Wu, Z. Shi, J. Wang, and X. Ning, “Multiscale permutation entropy anal-
ysis of electrocardiogram,” Physica A: Statistical Mechanics and its Applications, vol. 471,
pp. 492–498, 2017.

[86] B. Frank, B. Pompe, U. Schneider, and D. Hoyer, “Permutation entropy improves fetal
behavioural state classification based on heart rate analysis from biomagnetic recordings
in near term fetuses,” Medical and Biological Engineering and Computing, vol. 44, no. 3,
p. 179, 2006.

[87] A. A. S. Khan, U. Mumtahina, and N. Yeasmin, “Heart rate variability analysis using ap-
proximate entropy and detrended fluctuation for monitoring heart condition,” in 2013 Inter-
national Conference on Informatics, Electronics and Vision (ICIEV), IEEE, may 2013.

[88] V. Millette and N. Baddour, “Signal processing of heart signals for the quantification of
non-deterministic events,” BioMedical Engineering OnLine, vol. 10, no. 1, p. 10, 2011.

142

[89] M. Omidvar, A. Zahedi, and H. Bakhshi, “EEG signal processing for epilepsy seizure de-
tection using 5-level db4 discrete wavelet transform, GA-based feature selection and AN-
N/SVM classifiers,” Journal of Ambient Intelligence and Humanized Computing, vol. 12,
pp. 10395–10403, jan 2021.

[90] T. K. Dey and Y. Wang, Computational Topology for Data Analysis. Cambridge University
Press, 2021.

[91] M. Robinson, Topological Signal Processing. Springer Berlin Heidelberg, 2014.

[92] C. M. Topaz, L. Ziegelmeier, and T. Halverson, “Topological data analysis of biological
aggregation models,” PLOS ONE, vol. 10, p. e0126383, may 2015.

[93] M. R. McGuirl, A. Volkening, and B. Sandstede, “Topological data analysis of zebrafish
patterns,” Proceedings of the National Academy of Sciences, vol. 117, pp. 5113–5124, feb
2020.

[94] A. Myers and F. A. Khasawneh, “Dynamic state analysis of a driven magnetic pendulum us-
ing ordinal partition networks and topological data analysis,” in Volume 7: 32nd Conference
on Mechanical Vibration and Noise (VIB), American Society of Mechanical Engineers, aug
2020.

[95] M. C. Yesilli, F. A. Khasawneh, and A. Otto, “On transfer learning for chatter detection
in turning using wavelet packet transform and ensemble empirical mode decomposition,”
CIRP Journal of Manufacturing Science and Technology, vol. 28, pp. 118–135, jan 2020.

[96] M. C. Yesilli and F. A. Khasawneh, “On transfer learning of traditional frequency and time
domain features in turning,” in Volume 2: Manufacturing Processes; Manufacturing Sys-
tems; Nano/Micro/Meso Manufacturing; Quality and Reliability, American Society of Me-
chanical Engineers, sep 2020.

[97] M. C. Yesilli and F. A. Khasawneh, “Data-driven and automatic surface texture analysis us-
ing persistent homology,” in 2021 20th IEEE International Conference on Machine Learn-
ing and Applications (ICMLA), IEEE, dec 2021.

[98] M. C. Yesilli, F. A. Khasawneh, and A. Otto, “Topological feature vectors for chatter detec-
tion in turning processes,” The International Journal of Advanced Manufacturing Technol-
ogy, vol. 119, pp. 5687–5713, jan 2022.

[99] M. Gidea and Y. Katz, “Topological data analysis of financial time series: Landscapes of
crashes,” Physica A: Statistical Mechanics and its Applications, vol. 491, pp. 820–834, feb
2018.

[100] M. Gidea, D. Goldsmith, Y. Katz, P. Roldan, and Y. Shmalo, “Topological recognition of
critical transitions in time series of cryptocurrencies,” Physica A: Statistical Mechanics and
its Applications, vol. 548, p. 123843, jun 2020.

[101] M. Gidea, “Topological data analysis of critical transitions in financial networks,” in 3rd
International Winter School and Conference on Network Science NetSci-X 2017 (P. R.
Shmueli E., Barzel B., ed.), Springer Proceedings in Complexity, Springer, Cham, 2017.

143

[102] P. T.-W. Yen and S. A. Cheong, “Using topological data analysis (TDA) and persistent ho-
mology to analyze the stock markets in singapore and taiwan,” Frontiers in Physics, vol. 9,
mar 2021.

[103] C.-S. Hu and M.-C. Yeh, “A topological data analysis approach to video summarization,” in
2019 IEEE International Conference on Image Processing (ICIP), IEEE, sep 2019.

[104] C. J. Tralie and B. McFee, “Enhanced hierarchical music structure annotations via feature
level similarity fusion,” IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2019, Feb. 2019.

[105] S. Tymochko, E. Munch, and F. A. Khasawneh, “Adaptive partitioning for template func-
tions on persistence diagrams,” in 2019 18th IEEE International Conference On Machine
Learning And Applications (ICMLA), IEEE, dec 2019.

[106] G. Muszynski, K. Kashinath, V. Kurlin, and M. W. and, “Topological data analysis and
machine learning for recognizing atmospheric river patterns in large climate datasets,” Geo-
scientific Model Development, vol. 12, pp. 613–628, feb 2019.

[107] Y.-M. Chung, C.-S. Hu, Y.-L. Lo, and H.-T. Wu, “A persistent homology approach to heart
rate variability analysis with an application to sleep-wake classification,” Frontiers in Phys-
iology, vol. 12, mar 2021.

[108] S. Emrani, T. Gentimis, and H. Krim, “Persistent homology of delay embeddings and its
application to wheeze detection,” Signal Processing Letters, IEEE, vol. 21, pp. 459–463,
April 2014.

[109] S. Maletić, Y. Zhao, and M. Rajković, “Persistent topological features of dynamical sys-
tems,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 26, p. 053105, may
2016.

[110] M. Small, J. Zhang, and X. Xu, “Transforming time series into complex networks,” in Lec-
ture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunica-
tions Engineering, pp. 2078–2089, Springer Berlin Heidelberg, 2009.

[111] Y. Yang and H. Yang, “Complex network-based time series analysis,” Physica A: Statistical
Mechanics and its Applications, vol. 387, pp. 1381–1386, feb 2008.

[112] Z. Gao and N. Jin, “Complex network from time series based on phase space reconstruc-
tion,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 19, p. 033137, sep
2009.

[113] A. Khor and M. Small, “Examining k-nearest neighbour networks: Superfamily phenom-
ena and inversion,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 26,
p. 043101, apr 2016.

[114] R. V. Donner, Y. Zou, J. F. Donges, N. Marwan, and J. Kurths, “Recurrence networks—a
novel paradigm for nonlinear time series analysis,” New Journal of Physics, vol. 12,
p. 033025, mar 2010.

144

[115] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuño, “From time series to complex
networks: The visibility graph,” Proceedings of the National Academy of Sciences, vol. 105,
pp. 4972–4975, mar 2008.

[116] M. McCullough, M. Small, T. Stemler, and H. H.-C. Iu, “Time lagged ordinal partition
networks for capturing dynamics of continuous dynamical systems,” Chaos: An Interdisci-
plinary Journal of Nonlinear Science, vol. 25, p. 053101, may 2015.

[117] M. Wang and L. Tian, “From time series to complex networks: The phase space coarse
graining,” Physica A: Statistical Mechanics and its Applications, vol. 461, pp. 456–468,
nov 2016.

[118] T. Weng, J. Zhang, M. Small, R. Zheng, and P. Hui, “Memory and betweenness preference
in temporal networks induced from time series,” Scientific Reports, vol. 7, feb 2017.

[119] A. S. L. O. Campanharo, M. I. Sirer, R. D. Malmgren, F. M. Ramos, and L. A. N. Amaral,
“Duality between time series and networks,” PLoS ONE, vol. 6, p. e23378, aug 2011.

[120] G. Nicolis, A. G. Cantú, and C. Nicolis, “Dynamical aspects of interaction networks,” In-
ternational Journal of Bifurcation and Chaos, vol. 15, pp. 3467–3480, nov 2005.

[121] V. F. Silva, M. E. Silva, P. Ribeiro, and F. Silva, “Novel features for time series analysis: a
complex networks approach,” Data Mining and Knowledge Discovery, mar 2022.

[122] M. Small, “Complex networks from time series: Capturing dynamics,” in 2013 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS2013), IEEE, may 2013.

[123] A. Myers, F. A. Khasawneh, and E. Munch, “Topological signal processing using the
weighted ordinal partition network,” 2022.

[124] M. Staniek and K. Lehnertz, “Parameter Selection for Permutation Entropy Measurements,”
International Journal of Bifurcation and Chaos, vol. 17, pp. 3729–3733, oct 2007.

[125] A. Myers and F. A. Khasawneh, “On the automatic parameter selection for permutation
entropy,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 30, p. 033130,
mar 2020.

[126] A. Krakovská, K. Mezeiová, and H. Budáčová, “Use of false nearest neighbours for select-
ing variables and embedding parameters for state space reconstruction,” Journal of Complex
Systems, vol. 2015, 2015.

[127] Y. Zou, R. V. Donner, N. Marwan, J. F. Donges, and J. Kurths, “Complex network ap-
proaches to nonlinear time series analysis,” Physics Reports, vol. 787, pp. 1–97, 2019.
Complex network approaches to nonlinear time series analysis.

[128] R. R. Coifman and S. Lafon, “Diffusion maps,” Applied and Computational Harmonic Anal-
ysis, vol. 21, no. 1, pp. 5–30, 2006. Special Issue: Diffusion Maps and Wavelets.

[129] J. R. Munkres, Elements of Algebraic Topology. Addison Wesley, 1993.

145

[130] A. Zomorodian and G. Carlsson, “Computing persistent homology,” Discrete & Computa-
tional Geometry, vol. 33, pp. 249–274, Nov. 2004.

[131] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington, “A roadmap for the
computation of persistent homology,” EPJ Data Science, vol. 6, aug 2017.

[132] N. Atienza, R. Gonzalez-Diaz, and M. Soriano-Trigueros, “A new entropy based summary
function for topological data analysis,” Electronic Notes in Discrete Mathematics, vol. 68,
pp. 113–118, jul 2018.

[133] N. Atienza, R. Gonzalez-Díaz, and M. Soriano-Trigueros, “On the stability of persistent
entropy and new summary functions for topological data analysis,” Pattern Recognition,
vol. 107, p. 107509, 2020.

[134] N. Atienza, M.-J. Jimenez, and M. Soriano-Trigueros, “Stable topological summaries for
analyzing the organization of cells in a packed tissue,” Mathematics, vol. 9, p. 1723, jul
2021.

[135] A. D. Myers, M. Yesilli, S. Tymochko, F. Khasawneh, and E. Munch, “Teaspoon: A com-
prehensive python package for topological signal processing,” in NeurIPS 2020 Workshop
on Topological Data Analysis and Beyond, 2020.

[136] C. E. Shannon, W. Weaver, and A. W. Burks, “The mathematical theory of communication,”
1951.

[137] S. M. Pincus, “Approximate entropy as a measure of system complexity.,” Proceedings of
the National Academy of Sciences, vol. 88, no. 6, pp. 2297–2301, 1991.

[138] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate
entropy and sample entropy,” American Journal of Physiology-Heart and Circulatory Phys-
iology, vol. 278, no. 6, pp. H2039–H2049, 2000.

[139] C. Bandt and B. Pompe, “Permutation entropy: a natural complexity measure for time se-
ries,” Physical review letters, vol. 88, no. 17, p. 174102, 2002.

[140] J. Garland, R. James, and E. Bradley, “Model-free quantification of time-series predictabil-
ity,” Physical Review E, vol. 90, nov 2014.

[141] F. Pennekamp, A. C. Iles, J. Garland, G. Brennan, U. Brose, U. Gaedke, U. Jacob, P. Kratina,
B. Matthews, S. Munch, M. Novak, G. M. Palamara, B. C. Rall, B. Rosenbaum, A. Tabi,
C. Ward, R. Williams, H. Ye, and O. L. Petchey, “The intrinsic predictability of ecological
time series and its potential to guide forecasting,” Ecological Monographs, vol. 89, mar
2019.

[142] Z. Shahriari and M. Small, “Permutation entropy of state transition networks to detect syn-
chronization,” International Journal of Bifurcation and Chaos, vol. 30, p. 2050154, aug
2020.

[143] M. Riedl, A. Müller, and N. Wessel, “Practical considerations of permutation entropy,” The
European Physical Journal Special Topics, vol. 222, no. 2, pp. 249–262, 2013.

146

[144] D. Li, Z. Liang, Y. Wang, S. Hagihira, J. W. Sleigh, and X. Li, “Parameter selection in
permutation entropy for an electroencephalographic measure of isoflurane anesthetic drug
effect,” Journal of clinical monitoring and computing, vol. 27, no. 2, pp. 113–123, 2013.

[145] H. Zhang and X. Liu, “Analysis of parameter selection for permutation entropy in logis-
tic chaotic series,” in Intelligent Transportation, Big Data & Smart City (ICITBS), 2018
International Conference on, pp. 398–402, IEEE, 2018.

[146] A. Popov, O. Avilov, and O. Kanaykin, “Permutation entropy of eeg signals for different
sampling rate and time lag combinations,” in Signal Processing Symposium (SPS), 2013,
pp. 1–4, IEEE, 2013.

[147] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Tur-
bulence, Warwick 1980: proceedings of a symposium held at the University of Warwick
1979/80, pp. 366–381, Springer, 2006.

[148] A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mu-
tual information,” Physical review A, vol. 33, no. 2, p. 1134, 1986.

[149] P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica
D: Nonlinear Phenomena, vol. 9, no. 1-2, pp. 189–208, 1983.

[150] T. Buzug and G. Pfister, “Optimal delay time and embedding dimension for delay-time co-
ordinates by analysis of the global static and local dynamical behavior of strange attractors,”
Physical review A, vol. 45, no. 10, p. 7073, 1992.

[151] M. Casdagli, S. Eubank, J. D. Farmer, and J. Gibson, “State space reconstruction in the
presence of noise,” Physica D: Nonlinear Phenomena, vol. 51, no. 1-3, pp. 52–98, 1991.

[152] P. Baudot and D. Bennequin, “Topological forms of information,” in AIP Conference Pro-
ceedings, vol. 1641, pp. 213–221, American Institute of Physics, 2015.

[153] F. A. Khasawneh and E. Munch, “Topological data analysis for true step detection in peri-
odic piecewise constant signals,” Proceedings of the Royal Society A: Mathematical, Phys-
ical and Engineering Science, vol. 474, p. 20180027, oct 2018.

[154] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of persistence diagrams,” Dis-
crete & Computational Geometry, vol. 37, pp. 103–120, dec 2006.

[155] B. T. F. Audun D. Myers, Firas A. Khasawneh, “Separating persistent homology of noise
from time series data using topological signal processing,” arXiv:2012.04039 [math.AT],
2020.

[156] M. Tao, K. Poskuviene, N. Alkayem, M. Cao, and M. Ragulskis, “Permutation entropy
based on non-uniform embedding,” Entropy, vol. 20, no. 8, p. 612, 2018.

[157] R. J. Adler, O. Bobrowski, M. S. Borman, E. Subag, and S. Weinberger, “Persistent
homology for random fields and complexes,” in Borrowing strength: theory powering
applications–a Festschrift for Lawrence D. Brown, vol. 6, pp. 124–144, Ohio: Institute
of Mathematical Statistics, 2010.

147

[158] R. J. Adler, O. Bobrowski, and S. Weinberger, “Crackle: The homology of noise,” Discrete
& Computational Geometry, vol. 52, pp. 680–704, aug 2014.

[159] M. Kahle and E. Meckes, “Limit theorems for betti numbers of random simplicial com-
plexes,” Homology, Homotopy and Applications, vol. 15, no. 1, pp. 343–374, 2013.

[160] S. Seo, A review and comparison of methods for detecting outliers in univariate data sets.
PhD thesis, University of Pittsburgh, 2006.

[161] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, “Detecting outliers: Do not use stan-
dard deviation around the mean, use absolute deviation around the median,” Journal of
Experimental Social Psychology, vol. 49, no. 4, pp. 764–766, 2013.

[162] F. R. Hampel, “The influence curve and its role in robust estimation,” Journal of the ameri-
can statistical association, vol. 69, no. 346, pp. 383–393, 1974.

[163] B. Iglewicz and D. Hoaglin, Volume 16: how to detect and handle outliers, The ASQC basic
references in quality control: statistical techniques, Edward F. Mykytka. PhD thesis, Ph. D.,
Editor, 1993.

[164] K. Keller, T. Mangold, I. Stolz, and J. Werner, “Permutation entropy: New ideas and chal-
lenges,” Entropy, vol. 19, p. 134, mar 2017.

[165] L. Zunino, M. C. Soriano, I. Fischer, O. A. Rosso, and C. R. Mirasso, “Permutation-
information-theory approach to unveil delay dynamics from time-series analysis,” Physical
Review E, vol. 82, no. 4, p. 046212, 2010.

[166] H. Shaobo, S. Kehui, and W. Huihai, “Modified multiscale permutation entropy algorithm
and its application for multiscroll chaotic systems,” Complexity, vol. 21, pp. 52–58, nov
2014.

[167] R. H. Shumway, D. S. Stoffer, and D. S. Stoffer, Time series analysis and its applications,
vol. 3. Springer, 2000.

[168] V. Deshmukh, E. Bradley, J. Garland, and J. D. Meiss, “Using curvature to select the time
lag for delay reconstruction,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 30, p. 063143, jun 2020.

[169] J. Zhang and P. Zhang, Time Series Analysis Methods and Applications for Flight Data.
Berlin: Springer Berlin Heidelberg, 2017.

[170] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger, “Indications
of nonlinear deterministic and finite-dimensional structures in time series of brain electrical
activity: Dependence on recording region and brain state,” Physical Review E, vol. 64, no. 6,
p. 061907, 2001.

[171] G. B. Moody and R. G. Mark, “The impact of the mit-bih arrhythmia database,” IEEE
Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50, 2001.

148

[172] I. B. Masokano, W. Liu, S. Xie, D. F. H. Marcellin, Y. Pei, and W. Li, “The application of
texture quantification in hepatocellular carcinoma using ct and mri: a review of perspectives
and challenges,” Cancer Imaging, 2020.

[173] I. Ymeti, D. Shrestha, V. Jetten, C. Lievens, and and, “Using color, texture and object-
based image analysis of multi-temporal camera data to monitor soil aggregate breakdown,”
Sensors, vol. 17, p. 1241, may 2017.

[174] F. Gao and Y. Lu, “Moving target detection using inter-frame difference methods combined
with texture features and lab color space,” in 2019 International Conference on Artificial
Intelligence and Advanced Manufacturing (AIAM), pp. 76–81, 2019.

[175] T. Thomas, “Trends in surface roughness,” International Journal of Machine Tools and
Manufacture, vol. 38, pp. 405–411, may 1998.

[176] A. Spierings, T. Starr, and K. Wegener, “Fatigue performance of additive manufactured
metallic parts,” Rapid Prototyping Journal, vol. 19, pp. 88–94, 3 2013.

[177] W. E. Frazier, “Metal additive manufacturing: A review,” Journal of Materials Engineering
and Performance, vol. 23, pp. 1917–1928, apr 2014.

[178] K. S. Chan, M. Koike, R. L. Mason, and T. Okabe, “Fatigue life of titanium alloys fabri-
cated by additive layer manufacturing techniques for dental implants,” Metallurgical and
Materials Transactions A, vol. 44, pp. 1010–1022, oct 2012.

[179] H. Yin and T. Emi, “Marangoni flow at the gas/melt interface of steel,” Metallurgical and
Materials Transactions B, vol. 34, pp. 483–493, 10 2003.

[180] D. Gu and Y. Shen, “Balling phenomena in direct laser sintering of stainless steel powder:
Metallurgical mechanisms and control methods,” Materials & Design, vol. 30, pp. 2903–
2910, sep 2009.

[181] D. Gu, Laser Additive Manufacturing of High-Performance Materials. Springer Berlin Hei-
delberg, 2015.

[182] Y. Liu, L. Guo, H. Gao, Z. You, Y. Ye, and B. Zhang, “Machine vision based condition
monitoring and fault diagnosis of machine tools using information from machined surface
texture: A review,” Mechanical Systems and Signal Processing, vol. 164, p. 108068, 2022.

[183] O. O. Khalifa, A. Densibali, and W. Faris, “Image processing for chatter identification in
machining processes,” The International Journal of Advanced Manufacturing Technology,
vol. 31, pp. 443–449, feb 2006.

[184] N. Lei and M. Soshi, “Vision-based system for chatter identification and process optimiza-
tion in high-speed milling,” The International Journal of Advanced Manufacturing Technol-
ogy, vol. 89, pp. 2757–2769, dec 2016.

[185] M. Szydłowski and B. Powałka, “Chatter detection algorithm based on machine vision,”
The International Journal of Advanced Manufacturing Technology, vol. 62, pp. 517–528,
dec 2011.

149

[186] D.-D. Li, W.-M. Zhang, Y.-S. Li, F. Xue, and J. Fleischer, “Chatter identification of thin-
walled parts for intelligent manufacturing based on multi-signal processing,” Advances in
Manufacturing, vol. 9, pp. 22–33, apr 2020.

[187] M.-Q. Tran, M. Elsisi, and M.-K. Liu, “Effective feature selection with fuzzy entropy and
similarity classifier for chatter vibration diagnosis,” Measurement, vol. 184, p. 109962, nov
2021.

[188] W. Zhu, J. Zhuang, B. Guo, W. Teng, and F. Wu, “An optimized convolutional neural net-
work for chatter detection in the milling of thin-walled parts,” The International Journal of
Advanced Manufacturing Technology, vol. 106, pp. 3881–3895, jan 2020.

[189] N. N. Bhat, S. Dutta, S. K. Pal, and S. Pal, “Tool condition classification in turning pro-
cess using hidden markov model based on texture analysis of machined surface images,”
Measurement, vol. 90, pp. 500–509, aug 2016.

[190] C. Bradley and Y. Wong, “Surface texture indicators of tool wear - a machine vision
approach,” The International Journal of Advanced Manufacturing Technology, vol. 17,
pp. 435–443, apr 2001.

[191] A. Datta, S. Dutta, S. Pal, and R. Sen, “Progressive cutting tool wear detection from ma-
chined surface images using voronoi tessellation method,” Journal of Materials Processing
Technology, vol. 213, pp. 2339–2349, dec 2013.

[192] L. Li and Q. An, “An in-depth study of tool wear monitoring technique based on image
segmentation and texture analysis,” Measurement, vol. 79, pp. 44–52, feb 2016.

[193] D. Kerr, J. Pengilley, and R. Garwood, “Assessment and visualisation of machine tool wear
using computer vision,” The International Journal of Advanced Manufacturing Technology,
vol. 28, pp. 781–791, may 2005.

[194] M. Danesh and K. Khalili, “Determination of tool wear in turning process using undeci-
mated wavelet transform and textural features,” Procedia Technology, vol. 19, pp. 98–105,
2015.

[195] A. Kassim, Z. Mian, and M. Mannan, “Connectivity oriented fast hough transform for tool
wear monitoring,” Pattern Recognition, vol. 37, pp. 1925–1933, sep 2004.

[196] K. Zhu and X. Yu, “The monitoring of micro milling tool wear conditions by wear area
estimation,” Mechanical Systems and Signal Processing, vol. 93, pp. 80–91, sep 2017.

[197] K. Stȩpień, “Research on a surface texture analysis by digital signal processing methods,”
Tehnicki Vjesnik-Technical Gazette, vol. 21, no. 3, pp. 485–493, 2014.

[198] A. J. S. Santiago, A. J. Yuste, J. E. M. Expósito, S. G. Galán, R. P. Prado, J. M. Maqueira, and
S. Bruque, “Real-time image texture analysis in quality management using grid computing:
an application to the MDF manufacturing industry,” The International Journal of Advanced
Manufacturing Technology, vol. 58, pp. 1217–1225, aug 2011.

150

[199] X. Xie, “A review of recent advances in surface defect detection using texture analysis
techniques,” ELCVIA: electronic letters on computer vision and image analysis, pp. 1–22,
2008.

[200] Ş. Öztürk and B. Akdemir, “Comparison of edge detection algorithms for texture analysis
on glass production,” Procedia-Social and Behavioral Sciences, vol. 195, pp. 2675–2682,
2015.

[201] V. R. Vijaykumar and S. Sangamithirai, “Rail defect detection using gabor filters with tex-
ture analysis,” 2015 3rd International Conference on Signal Processing, Communication
and Networking (ICSCN), mar 2015.

[202] M. Kilic, S. Hiziroglu, and E. Burdurlu, “Effect of machining on surface roughness of
wood,” Building and Environment, vol. 41, pp. 1074–1078, aug 2006.

[203] N. Myshkin, A. Grigoriev, S. Chizhik, K. Choi, and M. Petrokovets, “Surface roughness and
texture analysis in microscale,” Wear, vol. 254, pp. 1001–1009, jul 2003.

[204] B. Josso, D. R. Burton, and M. J. Lalor, “Frequency normalised wavelet transform for sur-
face roughness analysis and characterisation,” Wear, vol. 252, pp. 491–500, mar 2002.

[205] B. AlMangour and J.-M. Yang, “Improving the surface quality and mechanical properties
by shot-peening of 17-4 stainless steel fabricated by additive manufacturing,” Materials &;
Design, vol. 110, pp. 914–924, nov 2016.

[206] O. Hatamleh, “The effects of laser peening and shot peening on mechanical properties in
friction stir welded 7075-t7351 aluminum,” Journal of Materials Engineering and Perfor-
mance, vol. 17, pp. 688–694, oct 2008.

[207] Y. Liu, Y. Cao, H. Zhou, X. Chen, Y. Liu, L. Xiao, X. Huan, Y. Zhao, and Y. Zhu, “Mechan-
ical properties and microstructures of commercial-purity aluminum processed by rotational
accelerated shot peening plus cold rolling,” Advanced Engineering Materials, vol. 22, no. 1,
p. 1900478, 2020.

[208] E. Maleki and O. Unal, “Shot peening process effects on metallurgical and mechanical prop-
erties of 316 l steel via: Experimental and neural network modeling,” Metals and Materials
International, vol. 27, pp. 262–276, sep 2019.

[209] M. Jamalian and D. P. Field, “Effects of shot peening parameters on gradient microstructure
and mechanical properties of TRC AZ31,” Materials Characterization, vol. 148, pp. 9–16,
feb 2019.

[210] L. Xie, Y. Wen, K. Zhan, L. Wang, C. Jiang, and V. Ji, “Characterization on surface mechan-
ical properties of ti–6al–4v after shot peening,” Journal of Alloys and Compounds, vol. 666,
pp. 65–70, may 2016.

[211] P. Guo and K. F. Ehmann, “An analysis of the surface generation mechanics of the ellipti-
cal vibration texturing process,” International Journal of Machine Tools and Manufacture,
vol. 64, pp. 85–95, jan 2013.

151

[212] R. Kurniawan, G. Kiswanto, and T. J. Ko, “Micro-dimple pattern process and orthogonal
cutting force analysis of elliptical vibration texturing,” International Journal of Machine
Tools and Manufacture, vol. 106, pp. 127–140, jul 2016.

[213] J. Jiang, S. Sun, D. Wang, Y. Yang, and X. Liu, “Surface texture formation mechanism based
on the ultrasonic vibration-assisted grinding process,” International Journal of Machine
Tools and Manufacture, vol. 156, p. 103595, sep 2020.

[214] J. Chen, Y. Xu, J. Sandoval, P. Kwon, and Y. Guo, “On force-displacement characteristics
and surface deformation in piezo vibration striking treatment (pvst),” Journal of Manufac-
turing Science and Engineering, pp. 1–27, 2021.

[215] M. H. Bharati, J. Liu, and J. F. MacGregor, “Image texture analysis: methods and compar-
isons,” Chemometrics and Intelligent Laboratory Systems, vol. 72, pp. 57–71, jun 2004.

[216] G. Srinivasan and G. Shobha, “Statistical texture analysis,” in Proceedings of world
academy of science, engineering and technology, vol. 36, pp. 1264–1269, 2008.

[217] A. Materka, M. Strzelecki, et al., “Texture analysis methods–a review,” Technical university
of lodz, institute of electronics, COST B11 report, Brussels, vol. 10, no. 1.97, p. 4968, 1998.

[218] Z.-Z. Wang and J.-H. Yong, “Texture analysis and classification with linear regression
model based on wavelet transform,” IEEE transactions on image processing, vol. 17, no. 8,
pp. 1421–1430, 2008.

[219] F. C. Motta, R. Neville, P. D. Shipman, D. A. Pearson, and R. M. Bradley, “Measures
of order for nearly hexagonal lattices,” Physica D: Nonlinear Phenomena, vol. 380-381,
pp. 17–30, oct 2018.

[220] S. Kaji, T. Sudo, and K. Ahara, “Cubical ripser: Software for computing persistent homol-
ogy of image and volume data,” 2020.

[221] D. M. Lane, “Online statistics education.” http://onlinestatbook.com/, 4 2013.

[222] SciPy, “Wasserstein distance.” https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.wasserstein_distance.html, 2008.

[223] M. Arizmendi, A. Jiménez, W. E. Cumbicus, M. Estrems, and M. Artano, “Modelling of
elliptical dimples generated by five-axis milling for surface texturing,” International Journal
of Machine Tools and Manufacture, vol. 137, pp. 79–95, feb 2019.

[224] C. Grob and T.-K. Strempel, “On generalizations of conics and on a generalization of the
fermat- torricelli problem,” The American Mathematical Monthly, vol. 105, p. 732, oct 1998.

[225] V. Behravan, “pointcloud2image(x,y,z,numr,numc).” https://www.mathworks.com/
matlabcentral/fileexchange/55031-pointcloud2image-x-y-z-numr-numc, 1
2016.

[226] P. Benardos and G.-C. Vosniakos, “Predicting surface roughness in machining: a review,”
International Journal of Machine Tools and Manufacture, vol. 43, pp. 833–844, jun 2003.

152

[227] International Organization for Standardization, ISO 4287:1997. Geometrical Product Spec-
ifications (GPS) – Surface texture: profile method – terms, definitions and surface texture
parameters, 1997.

[228] International Organization for Standardization, ISO 25178-2:2012. Geometrical Product
Specifications (GPS) – Surface texture: areal – part 2: terms, definitions and surface texture
parameters, 2012.

[229] Surface texture : surface roughness, waviness, and lay. New York: American Society of
Mechanical Engineers, 2020.

[230] R. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile sensing—from humans to hu-
manoids,” IEEE Transactions on Robotics, vol. 26, pp. 1–20, feb 2010.

[231] S. Ding, Y. Pan, M. Tong, and X. Zhao, “Tactile perception of roughness and hardness to
discriminate materials by friction-induced vibration,” Sensors, vol. 17, p. 2748, nov 2017.

[232] S. Hossain and S. Serikawa, “Features for texture analysis,” in 2012 Proceedings of SICE
Annual Conference (SICE), pp. 1739–1744, 2012.

[233] S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel,
“Formation of ordered nanoscale semiconductor dots by ion sputtering,” Science, vol. 285,
pp. 1551–1553, sep 1999.

[234] M. Torres and H. Voorwald, “An evaluation of shot peening, residual stress and stress relax-
ation on the fatigue life of aisi 4340 steel,” International Journal of Fatigue, vol. 24, no. 8,
pp. 877–886, 2002.

[235] T. Roland, D. Retraint, K. Lu, and J. Lu, “Fatigue life improvement through surface nanos-
tructuring of stainless steel by means of surface mechanical attrition treatment,” Scripta
Materialia, vol. 54, no. 11, pp. 1949–1954, 2006.

[236] H. C. Yildirim and G. B. Marquis, “Fatigue strength improvement factors for high strength
steel welded joints treated by high frequency mechanical impact,” International Journal of
Fatigue, vol. 44, pp. 168–176, 2012.

[237] X. Cao, Y. Pyoun, and R. Murakami, “Fatigue properties of a s45c steel subjected to
ultrasonic nanocrystal surface modification,” Applied Surface Science, vol. 256, no. 21,
pp. 6297–6303, 2010.

[238] Y. Guo, S. E. Lee, and J. B. Mann, “Piezo-actuated modulation-assisted drilling system with
integrated force sensing,” Journal of Manufacturing Science and Engineering, vol. 139,
no. 1, 2017.

[239] Y. Guo and J. B. Mann, “Control of chip formation and improved chip ejection in drilling
with modulation-assisted machining,” Journal of Manufacturing Science and Engineering,
vol. 142, no. 7, p. 071001, 2020.

[240] G. Carlsson and A. Zomorodian, “The theory of multidimensional persistence,” Discrete &
Computational Geometry, vol. 42, no. 1, pp. 71–93, 2009.

153

[241] J. R. Munkres, Elements of algebraic topology. CRC press, 2018.

[242] U. Bauer, “Ripser: efficient computation of vietoris-rips persistence barcodes,” Journal of
Applied and Computational Topology, 2021.

[243] M. Kuenzi and A. Fiechter, “Changes in carbohydrate composition and trehalase activity
during the budding cycle of Saccharomyces cerevisiae,” Arch Mikrobiol, vol. 64, pp. 396–
407, 1969.

[244] T. Tu, A. Kudlicki, M. Rowicka, and S. McKnight, “Logic of the yeast metabolic cycle:
Temporal compartmentalization of cellular processes,” Science, vol. 310, pp. 1152–1158,
2005.

[245] N. Slavov, J. Macinskas, A. Caudy, and D. Botstein, “Metabolic cycling without cell division
cycling in respiring yeast,” PNAS, vol. 108, no. 47, p. 19090–19095, 2011.

[246] J. Robertson, C. Stowers, E. Boczko, and C. Johnson, “Real-time luminescence monitoring
of cell-cycle and respiratory oscillations in yeast,” PNAS, vol. 105, no. 46, p. 17988–17993,
2008.

[247] S. Silverman and et al., “Metabolic cycling in single yeast cells from unsynchronized steady-
state populations limited on glucose or phosphate,” PNAS, vol. 107, p. 6946–6951, 2010.

[248] M. Brauer and et. al., “Coordination of growth rate, cell cycle, stress response, and metabolic
activity in yeast,” Mol Biol Cell, vol. 19, pp. 352–367, 2008.

[249] N. Slavov and D. Botstein, “Coupling among growth rate response, metabolic cycle, and
cell division cycle in yeast,” Mol Biol Cell, vol. 22, p. 1997–2009, 2011.

[250] R. Klevecz, J. Bolen, G. Forrest, and D. Murray, “A genomewide oscillation in transcription
gates dna replication and cell cycle,” PNAS, vol. 101, no. 5, pp. 1200–1205, 2004.

[251] M. Jules, J. Francois, and J. Parrou, “Autonomous oscillations in saccharomyces cerevisiae
during batch cultures on trehalose,” FEBS J., vol. 272, pp. 1490–1500, 2005.

[252] D. Murray, R. Klevecz, and D. Lloyd, “Generation and maintenance of synchrony in saccha-
romyces cerevisiae continuous culture,” Experimental Cell Research, vol. 287, pp. 10–15,
2003.

[253] M. A. Henson, “Modeling the sychronization of yeast respiratory oscillations,” Journal of
Theoretical Biology, vol. 231, pp. 443–458, 2004.

[254] H. Y. Sohn and H. Kuriyama, “Ultradian metabolic oscillation of saccharomyces cerevisiae
during aerobic continuous culture: Hydrogen sulphide, a population synchronizer, is pro-
duced by sulphite reductase,” Yeast, vol. 18, no. 2, pp. 125–135, 2001.

[255] C. A. Adams, H. Kuriyama, D. Lloyd, and D. B. Murray, “The gts1 protein stabilizes the
autonomous oscillator in yeast,” Yeast, vol. 20, no. 6, pp. 463–470, 2003.

154

[256] D. Muller, S. Exler, L. Aguilera-Vazquez, E. Guerrero-Martin, and M. Reuss, “Cyclic amp
mediates the cell cycle dynamics of energy metabolism in saccharomyces cervisiae,” Yeast,
vol. 20, pp. 351–367, 2003.

[257] E. M. Boczko, T. Gedeon, C. C. Stowers, and T. R. Young, “Ode, rde and sde models of
cell cycle dynamics and clustering in yeast,” Journal of biological dynamics, vol. 4, no. 4,
pp. 328–345, 2010.

[258] C. C. Stowers, T. R. Young, and E. M. Boczko, “The structure of populations of budding
yeast in response to feedback,” Hypotheses in the Life Sciences, vol. 1, pp. 71–84, 2011.

[259] L. Morgan, G. Moses, and T. Young, “Coupling of the cell cycle and metabolism in
yeast cell-cycle-related oscillations via resource criticality and checkpoint gating,” Letter
in Biomathematics, vol. 5, no. 1, p. 113–128, 2018.

[260] J. J. Woolford and S. Baserga, “Ribosome biogenesis in the yeast saccharomyces cere-
visiae,” Genetics, vol. 195, no. 3, 2013.

[261] M. Scott, S. Klumpp, E. M. Mateescu, and T. Hwa, “Emergence of robust growth laws from
optimal regulation of ribosome synthesis,” Mol Syst Biol., vol. 10, no. 8, p. 747, 2014.

[262] F. A. Rihan, C. Tunc, S. Saker, S. Lakshmanan, and R. Rakkiyappan, “Applications of delay
differential equations in biological systems.,” Complexity, vol. 2018, pp. NA–NA, 2018.

[263] A. Fowler, “Approximate solution of a model of biological immune responses incorporating
delay,” Journal of mathematical biology, vol. 13, pp. 23–45, 1981.

[264] H. Gulbudak, P. L. Salceanu, and G. S. Wolkowicz, “A delay model for persistent viral
infections in replicating cells,” Journal of Mathematical Biology, vol. 82, no. 7, p. 59, 2021.

[265] G. Huang, Y. Takeuchi, W. Ma, and D. Wei, “Global stability for delay sir and seir epidemic
models with nonlinear incidence rate,” Bulletin of mathematical biology, vol. 72, pp. 1192–
1207, 2010.

[266] K. Gopalsamy and B. Aggarwala, “The logistic equation with a diffusionally coupled delay,”
Bulletin of Mathematical Biology, vol. 43, no. 2, pp. 125–140, 1981.

[267] A. Longtin and J. G. Milton, “Modelling autonomous oscillations in the human pupil
light reflex using non-linear delay-differential equations,” Bulletin of Mathematical Biol-
ogy, vol. 51, no. 5, pp. 605–624, 1989.

[268] G. Rosen, “Time delays produced by essential nonlinearity in population growth models,”
Bulletin of mathematical biology, vol. 49, no. 2, pp. 253–255, 1987.

[269] B. Pell, S. Brozak, T. Phan, F. Wu, and Y. Kuang, “The emergence of a virus variant: dy-
namics of a competition model with cross-immunity time-delay validated by wastewater
surveillance data for covid-19,” Journal of Mathematical Biology, vol. 86, no. 5, p. 63,
2023.

155

[270] L. M. y Terán-Romero, M. Silber, and V. Hatzimanikatis, “The origins of time-delay in
template biopolymerization processes,” PLoS Computational Biology, vol. 6, p. e1000726,
apr 2010.

[271] T. Gedeon, A. R. Humphries, M. C. Mackey, H.-O. Walther, and Z. Wang, “Operon dynam-
ics with state dependent transcription and/or translation delays,” Journal of Mathematical
Biology, vol. 84, no. 1-2, p. 2, 2022.

[272] “vpasolve - solve symbolic equations numerically.” https://www.mathworks.com/help/
symbolic/sym.vpasolve.html. Accessed: 2023-06-20.

[273] F. A. Khasawneh and B. P. Mann, “A spectral element approach for the stability analysis of
time-periodic delay equations with multiple delays,” Communications in Nonlinear Science
and Numerical Simulation, vol. 18, pp. 2129–2141, aug 2013.

[274] Y. A. Kuznetsov, Numerical Analysis of Bifurcations, pp. 505–585. New York, NY: Springer
New York, 2004.

[275] W.-j. Beyn, A. Champneys, E. Doedel, W. Govaerts, Y. Kuznetsov, and B. Sandstede, “Nu-
merical continuation, and computation of normal forms,” vol. 2, 06 1999.

[276] D. Breda, S. Maset, and R. Vermiglio, “Pseudospectral differencing methods for character-
istic roots of delay differential equations,” SIAM Journal on Scientific Computing, vol. 27,
no. 2, pp. 482–495, 2005.

[277] G. Stépán, Retarded dynamical systems: stability and characteristic functions. London and
New York: Longman, co-published with Wiley, 1989.

[278] G. Datseris, “Dynamicalsystems.jl: A julia software library for chaos and nonlinear dynam-
ics,” Journal of Open Source Software, vol. 3, p. 598, mar 2018.

[279] F. A. Khasawneh, D. A. Barton, and B. P. Mann, “Periodic solutions of nonlinear delay dif-
ferential equations using spectral element method,” Nonlinear dynamics, vol. 67, pp. 641–
658, 2012.

156

